
MS-DOS API EXTENSIONS FOR DPMI HOSTS

Version Pre-Release 0.04

MICROSOFT CONFIDENTIAL
TABLE OF CONTENTS

.Begin Table C.
1. Introduction 1
2. Detecting the Presence of MS-DOS Extensions 2
3. API Entry Point Functions 3

3.1 Get MS-DOS Extension Version 4
3.2 Get Selector to Base of LDT 5

4. Notes for Microsoft Windows Program Writers 6
6. DOS and BIOS Calls 9
7. DOS State on Entry Into Protected Mode 11
8. Supported DOS Calls 12

8.1 DOS Calls That Are Not Supported 13
8.1.1 Unsupported Interrupts 13
8.1.2 Unsupported Interrupt 21h DOS Functions 13

8.2 Calls That Behave Differently In Protected Mode 14
Function 00h -- Terminate Process 14
8.2.1 Functions 25h and 35h -- Set/Get Interrupt Vector 14
8.2.2 Function 31h -- Terminate and Stay Resident 14
8.2.3 Function 32h -- Get Current Country Data 14
8.2.4 Functions 3Fh and 40h -- Read/Write File or Device 15
8.2.5 Function 44h, Subfunctions 02h, 03h, 04h, and 05h 15
8.2.6 Function 44h, Subfunction 0Ch 15

8.2.5 Function 44h, Subfunctions 02h, 03h, 04h, and 05h 15
8.2.6 Function 44h, Subfunction 0Ch 15
8.2.7 Functions 48h, 49h and 4Ah 15
8.2.8 Function 4Bh -- Load and Execute Program 15
8.2.9 Function 4Ch -- Terminate Process with Return Code 16
8.2.10 Function 65h -- Get Extended Country Information 16

9. Supported BIOS Calls 17
9.1 Interrupt 10h -- Video 18

9.1.1 Register Based Functions (supported): 18
9.1.2 Function 10h -- Set Palette Registers 18
9.1.3 Function 13h -- Write String 18
9.1.4 Functions that are not Fully Supported 18

9.2 Interrupt 11h -- Equipment Determination 19
9.3 Interrupt 12h -- Memory Size Determination 20
9.4 Interrupt 13h -- Diskette / Fixed Disk Interface 21
9.5 Interrupt 14h -- Asynchronous Communications 22
9.6 Interrupt 15h -- System Services 23

9.6.1 Register Based Functions (supported): 23
9.6.2 Function C0h -- Return System Configuration Parameters 23
9.6.3 Function C1h -- Pointing Device Interface 23
9.6.4 Functions that are Not Supported: 23

9.7 Interrupt 16h -- Keyboard 24
9.8 Interrupt 17h -- Printer 25
9.9 Interrupt 1Ah -- System-Timer and Real-Time Clock 26

9.9.1 Register Based Functions (supported): 26
9.9.2 Function 06h -- Set Real-Time Clock Alarm 26

10. Mouse Driver Interface 27
10.1 Mouse Calls that Are Supported 27

10.1.1 Register Based Calls 27
10.1.2 Function 09h -- Set Pointer Shape 27
10.1.3 Function 0Ch -- Set User-Defined Mouse Event Handler 28
10.1.4 Functions 16h and 17h -- Save/Restore Mouse Driver State 28

10.2 Mouse Calls that Are Not Supported 28

10.1.4 Functions 16h and 17h -- Save/Restore Mouse Driver State 28
10.2 Mouse Calls that Are Not Supported 28

11. NETBIOS 29
12. Interrupts 23h and 24h 30
.End Table C.

1. Introduction

While the DOS Protected Mode Interface (DPMI) specification does not support
DOS calls from protected mode programs, extenders from many companies,
including enhanced mode Windows 3.00, do support Int 21h and other standard
DOS and BIOS interrupts commonly used in DOS extended programs.

This document defines an interface that allows the "MS-DOS" extensions to be
detected, and provides guidelines on deviations of behavior from DOS calls
made in real mode.

2. Detecting the Presence of MS-DOS Extensions

The MS-DOS extensions are supported by all versions of Enhanced mode
Windows. Windows version 3.00 does not support the Int 2Fh API detection
mechanism or API entry point, but does support all DOS and BIOS calls
documented in this text. The correct code sequence for detecting the presence
of the MS-DOS extensions is as follows:

MS_DOS_Name_String db "MS-DOS", 0

;
; Note: This assumes that the program has
; already called the DPMI real to protected
; mode switch entry point and is now running

; already called the DPMI real to protected
; mode switch entry point and is now running
; in protected mode
;
Test_For_MS_DOS_Ext_Code:

mov ax, 168Ah
mov (e)si, OFFSET MS_DOS_Name_String
int 2Fh
cmp al, 8Ah
jne Have_MS_DOS_Extensions

;
; Check for presence of Enhanced Windows 3.00
;

mov ax, 1600h
int 2Fh
test al, 7Fh
jnz

Have_MS_DOS_Extensions_But_No_Call_Back

(MS-DOS extensions are not present)

If the first Int 2Fh succeeds then ES:(E)DI will point to an API entry point that can
be called by the program perform functions described in the next section. If the
first Int 2Fh fails, but the program is running under Enhanced mode Windows
3.00 then the MS-DOS extensions are supported, but it is not possible to call the
API entry point since it was not supported in Windows 3.00.

3. API Entry Point Functions

The MS-DOS extensions provide only two new services for protected mode
programs. These are a get version function and a function that returns a selector
that points to the base of the current program's LDT.

programs. These are a get version function and a function that returns a selector
that points to the base of the current program's LDT.

To call the API entry point, programs must execute a far call to the address
returned in ES:(E)DI from the function described on page .

3.1 Get MS-DOS Extension Version
This function returns the version of MS-DOS extensions supported by the DPMI
host. Note that the value returned is not the version of DOS that the host is
running on, it is the version of DPMI MS-DOS extensions that are supported by
the host.

To Call

AX = 0000h

Returns

Carry flag is clear
AH = Major MS-DOS extension version number
AL = Minor MS-DOS extension version number

3.2 Get Selector to Base of LDT
Note that the DPMI host has the option of either failing this call, or to return a
read-only descriptor. If the host returns a writeable LDT base descriptor then
system security can be compromised, but performance of some programs (most
notably the Windows kernel) can improve dramatically. This allows programs to
avoid ring transitions when examining or modifying LDT selectors. Note that

notably the Windows kernel) can improve dramatically. This allows programs to
avoid ring transitions when examining or modifying LDT selectors. Note that
even read-only access to the LDT reduces overhead a great deal in some
circumstances. This would reduce the number of ring transitions for a get
descriptor/set descriptor calls from two to one.

To Call

AX = 0100h

Returns

If function was successful:
Carry flag is clear
AX = Selector which points to base of current LDT

If function was not successful:
Carry flag is set

Programmer's Notes

o If this function succeeds, the caller must examine the access rights
of the descriptor using a verw instruction to determine if the
descriptor is writeable or is read-only.

o The selector returned by this function may be a GDT selector or an
LDT selector. Programs should not assume that this selector exists
in a particular descriptor table.

o At some point, the host may choose to move the LDT in linear
memory. The host will be responsible for updating the descriptor
for this selector. For this reason, all programs, including 32-bit flat
model programs, should always access the LDT through this
selector only. Never attempt to access the memory at a particular
linear address. Never create an alias for this descriptor.

4. Notes for Microsoft Windows Program Writers

While both Standard and Ehnanced mode Windows support DPMI 0.9 with the
MS-DOS extensions, Windows programs should not call any DPMI functions
other than the following translation services:

AX = 0300h -- Simulate Real Mode Interrupt
AX = 0301h -- Call Real Mode Procedure With Far Return Frame
AX = 0302h -- Call Real Mode Procedure With Iret Frame
AX = 0303h -- Allocate Real Mode Call-Back Address
AX = 0304h -- Free Real Mode Call-Back Address

No other DPMI services, including the state save and raw mode switch
translation services, should be called by Windows programs or DLLs. The
Windows kernel uses DPMI to allocate memory, manipulate descriptors, and lock
pages. All Windows programs should call the appropriate kernel functions to
perform these operations. The following are hints for Windows progarmmers on
ways to avoid calling DPMI:

Windows programs should call the GetWinFlags function to determine if they are
running in protected mode instead of using the DPMI Get Version call.

Windows applications and DLLs programs should use the function calls supplied
by the Windows kernel to manipulate selectors instead of using DPMI
services. These are:

PrestoChangoSelector (Documented in SDK as ChangeSelector)
AllocSelector
AllocDStoCSAlias
FreeSelector

Windows applications programs should not use the DPMI DOS Memory
Managment services. The Windows kernel has two functions named
GlobalDOSAlloc and GlobalDOSFree that should be used by Windows

Managment services. The Windows kernel has two functions named
GlobalDOSAlloc and GlobalDOSFree that should be used by Windows
applications and DLLs for allocating and freeing DOS addressable
memory. Under normal circumstances the Windows kernel will have
allocated all free DOS addressable memory and so the DPMI functions
will always fail.

All requests to allocate, reallocate, free, or lock memory should be made through
kernel functions. For example, GlobalAlloc, GlobalReAlloc, GlobalFree,
etc.

Known Bugs and Workarounds For Windows 3.00 DPMI

Windows enhanced mode version 3.00 was the first implementation of DPMI 0.9.
~~~~

Int 10h Translation
Windows incorrectly maps Int 10h AH=0Eh (write character TTY) as a write string 
call (AH=13h).  This means that write string does not work from protected mode.  
However, write character will still work as long as the caller's ES:BP point to any 
valid data and CX=1.  Since Windows only copies the string pointed to by ES:BP 
and does not change any other registers then AX and BX are passed through to 
the BIOS correctly for the write character operation.  There is no workaround for 
write string other than using the DPMI translation services.

5. 32-bit programs

Many implementations of the MS-DOS extensions, including Enhanced mode 



5. 32-bit programs

Many implementations of the MS-DOS extensions, including Enhanced mode 
Windows, support 32-bit programs on 80386 and 80486 processors.  In most 
cases, the APIs are exactly the same as for 16-bit programs except that pointers 
are 48-bits.  That is, they consist of a segment and a 32-bit offset.  DOS read and 
write calls (AH=3Fh and 40h) the count register (ECX) is also extended to 32 
bits.  This allows 32-bit programs to perform DOS reads of greater than 64K 
bytes.

Hosts that support 32-bit programs will ignore and not modify the high word of an 
extended register unless the DOS or BIOS call returns a pointer (such as the Get 
Interrupt Vector call).  The extended portion of EAX will also be modified on DOS 
file read and write calls.  All other calls will leave the high word of the extended 
registers unmodified.  If code in real mode modifies the extneded portion of a 
register then that value will be returned to the protected mode DPMI program.

6. DOS and BIOS Calls

Programs running in protected mode under a DPMI host that supports the MS-
DOS extensions can make DOS and BIOS calls just as they would when running 
in real mode (with some minor exceptions).  The only difference is that the code 
and data of the program can reside in memory above one megabyte, and all 
pointers use protected mode selectors instead of real mode segments to point to 
data.  As in real mode, DOS is called by executing Int 21h.

When an Int 21h is executed in protected mode any data that is required by that 
call will be copied to a buffer in real mode and then the real mode DOS will be 
called with a pointer to the copied data.  The host is responsible for copying data 
and translating pointers -- DPMI programs that use the MS-DOS extensions need 
not worry about how 

For example, lets look at a series of DOS calls to open and read a file:



For example, lets look at a series of DOS calls to open and read a file:

;
; Open the file with read-only access
;
mov ax, 3D00h
mov dx, OFFSET File_Name_String
int 21h
jc Error

;
; Read the first 6000h bytes of the file
;
mov bx, ax
mov ah, 3Fh
mov cx, 6000h
mov dx, OFFSET Read_Buffer
int 21h
jc Error

;
; Close the file
;
mov ah, 3Eh
int 21h

The open file call takes an ASCIIZ pathname as a parameter.  Since the address 
passed to the protected mode Int 21h handler is a selector:offset (DS contains a 
selector to program's protected mode data segment), real mode DOS would not 
be able to access the data.  The protected mode DOS translator copies the string 
into a real mode buffer and then calls DOS in real mode with DS:DX pointing to 
the real mode buffer.  The values in other registers are not modified so the call 
number in AX will not be changed.  When real mode DOS returns, the values 
returned in the flags and all non-segment registers will be returned to the 
protected mode program.  In this case, the carry flag indicates an error and the 
file handle will be returned in AX.



protected mode program.  In this case, the carry flag indicates an error and the 
file handle will be returned in AX.

The second DOS call reads part of the file into a buffer.  Once again, since the 
buffer can not be accessed by real mode DOS, the data must be copied through 
a buffer.  The data will be read into a real mode buffer and copied into the 
protected mode memory.  Since the real mode buffer is usually smaller than 
6000h bytes the translator will probably have to break the read into several 
smaller pieces.  However, all the copying of data and multiple reads will be 
invisible to the caller.  The read will behave exactly as if the code were being 
executed in real mode.

For the final call (close file), the protected mode Int 21h hook just reflects the 
interrupt to real mode without translating anything.  Since the DOS close file 
command has no pointer parameters, no translation is necessary.

The sample code above is 16-bit code and would work on an 80286 DPMI 
implementation.  However, DPMI supports 32-bit programs on 80386 and 80486 
processors.  The only difference between 32-bit and 16-bit programs that 
pointers require a 32-bit offset in the extended register (EDX instead of DX) and 
that DOS read and write calls take a 32-bit count in ECX.  The 32-bit equivalent 
of the sample code is provided below.

;
; Open the file with read-only access
;
mov ax, 3D00h
mov edx, OFFSET File_Name_String
int 21h
jc Error

;
; Read the first 6000h bytes of the file
;
mov bx, ax



;
mov bx, ax
mov ah, 3Fh
mov ecx, 6000h
mov edx, OFFSET Read_Buffer
int 21h
jc Error

;
; Close the file
;
mov ah, 3Eh
int 21h

7. DOS State on Entry Into Protected Mode

A host that supports the MS-DOS extensions to DPMI maintains additional state 
information for each client program.  When a program enters protected mode on 
an extended DPMI host, the state will be as described in the DPMI 0.9 
specification with the following additions:

1. The protected mode DTA will be mapped to the real mode DTA when the 
program enters protected mode.  If the DTA address has not been 
changed from the default at offset 80h in the PSP, then the DTA selector 
will be the same as the PSP selector.  Otherwise, a new descriptor will be 
allocated.  Do not modify or free the DTA descriptor.  Use DOS call 2Fh to 
obtain the address of the DTA.

2. The DOS Ctrl+Break (Int 23h) and critical error (Int 24h) interrupt handlers 
will be set to default handlers as described on page .



8. Supported DOS Calls

This section describes the differences between real mode DOS and BIOS calls 
and those made in protected mode.  Obviously, pointers use protected mode 
selectors instead of real mode segments.  32-bit programs must use 48-bit 
pointers and the size parameters for some calls such as file reads and writes will 
be 32-bit.  For example DOS reads and writes use ECX for the size parameter 
instead of CX for 32-bit programs.  See page  for an example of 32-bit DOS 
code.

All DOS calls that are not mentioned in this section should work exactly as 
documented in The MS-DOS Encyclopedia.  The minimum assumed DOS 
version is 3.xx.

8.1 DOS Calls That Are Not Supported
The following DOS calls are not supported in protected mode.  They will fail if 
called.

8.1.1 Unsupported Interrupts

INTDescription
20h Terminate Program
25h Absolute Disk Read
26h Absolute Disk Write
27h Terminate And Stay Resident



8.1.2 Unsupported Interrupt 21h DOS Functions

AH Description
00h Terminate Process
0Fh Open File with FCB
10h Close File with FCB
14h Sequential Read
15h Sequential Write
16h Create File with FCB
21h Random Read
22h Random Write
23h Get File Size
24h Set Relative Record
27h Random Block Read
28h Random Block Write

8.2 Calls That Behave Differently In Protected Mode

Function 00h -- Terminate Process

This call should never be executed by standard DPMI appliations.  The 
Windows kernel requires a special version of process termination so that it 
can close Windows applications.  DOS call 0 has been redefined for this 
purpose.  Hosts must implement this function, but application writers 
should never call it.  See page  for more information.

8.2.1 Functions 25h and 35h -- Set/Get Interrupt Vector

These functions will set or get the protected mode interrupt vector.  They 
can be used to hook hardware interrupts (such as the timer or keyboard 



These functions will set or get the protected mode interrupt vector.  They 
can be used to hook hardware interrupts (such as the timer or keyboard 
interrupt) as well as hooking any software interrupts your program wishes 
to monitor.  With a few exceptions, software interrupts issued in real mode 
will not be reflected to protected mode interrupt handlers.  However, all 
hardware interrupts will be reflected to protected mode interrupt handlers 
before being reflected to real mode.  See page  for more information on 
hooking interrupts in protected mode programs.

32-bit programs must use 48-bit pointers and must use the iretd instruction 
to return from interrupts.

8.2.2 Function 31h -- Terminate and Stay Resident

The value in DX specifies the number of paragraphs of real mode memory 
to reserve for the program.  The reserved memory must include any 
memory allocated for the DOS extender when the program switched to 
protected mode.  All protected mode memory allocated through Int 31h or 
protected mode calls to DOS function 48h will not be deallocated -- It is up 
to the T&SR program to free any unneeded protected mode memory.

Note that protected mode "pop-up" programs will need to be very careful 
when saving and restoring the current DOS state to preserve both the real 
mode and protected mode states of the current task.  This type of program 
must call the state save functions documented on page .  It must also 
save and restore the DTA address in both protected mode and real mode.  
To get the current real mode DTA the program must use the translation 
services to call the real mode DOS Get DTA function.

8.2.3 Function 32h -- Get Current Country Data

This call returns a 34-byte buffer that contains a dword call address at 
offset 12h that is used for case-mapping.  This dword will contain a real 
mode address.  If you wish to call the case-mapping procedure you will 
need to use the DPMI translation service to simulate a real mode far call 



mode address.  If you wish to call the case-mapping procedure you will 
need to use the DPMI translation service to simulate a real mode far call 
(see page ).

8.2.4 Functions 3Fh and 40h -- Read/Write File or Device

32-bit programs must specify the size of the read or write in the ECX 
register instead of the CX register.  This allows for read and writes of 
greater than 64K.  The returned count will be in EAX instead of AX.  Note 
that 16-bit programs are still limited to reads of 0FFFFh bytes and the 
count will be retuned in AX.

8.2.5 Function 44h, Subfunctions 02h, 03h, 04h, and 05h

These IOCTL subfunctions are used to receive data from a device or send 
data to a device.  Since it is not possible to break the transfers into small 
pieces, the caller should assume that a transfer of greater than 2K bytes 
will fail unless the address of the buffer is in the DOS addressable first 
megabyte.

8.2.6 Function 44h, Subfunction 0Ch

Only minor function codes 45h (get iteration count) and 65h (set iteration 
count) are supported from protected mode.  Extensions of this IOCTL for 
code-page switching (functions function codes 4Ah, 4Ch, 4Dh, 6Ah, and 
6Bh) are not supported for protected mode programs.  You must use the 
translation services if you need to use this IOCTL to switch code pages 
(see page ).

8.2.7 Functions 48h, 49h and 4Ah

It is recommended that all memory allocations be made through the DPMI 
memory allocation services (see page ).  However, these DOS calls will 
work in protected mode.

DOS memory allocation calls issued by a protected mode program will 



DOS memory allocation calls issued by a protected mode program will 
allocate extended memory.  This memory is not addressable by real mode 
DOS.

32-bit programs must specify the number of paragraphs to allocate in the 
EBX register.  This allows for memory allocations of greater than 1Mb.

To determine the size of the largest available block set (E)BX to -1 and call 
function 48h.

8.2.8 Function 4Bh -- Load and Execute Program

This function can not be used to load a program overlay from a protected 
mode program.  However, you can execute another program using 
subfunction 0.  The program will be executed in real mode.  However, the 
child program can enter protected mode using the DPMI real to protected 
mode switch API.

The environment pointer in the exec parameter block is ignored and 
should be set to 0 by 16-bit programs.  32-bit programs should place an 
fword pointer to the command tail at offset 0. (~~~MORE DETAIL~~~)

8.2.9 Function 4Ch -- Terminate Process with Return Code

This is the only supported form of program termination for protected mode 
DOS programs.  It behaves exactly as it would in real mode.  It will free 
any memory that was allocated by the protected mode program, and 
return to the parent program.  The protected mode Int 23h and Int 24h 
vectors will be restored to the same value as ~~~~~~~.

8.2.10 Function 65h -- Get Extended Country Information

This function is supported for protected mode programs.  However, all 
doubleword parameters returned will contain real mode addresses.  This 



This function is supported for protected mode programs.  However, all 
doubleword parameters returned will contain real mode addresses.  This 
means the case conversion procedure address and all pointers to tables 
will contain real mode segment:offset addresses.  You must use the 
translation services to call the case conversion procedure in real mode.

9. Supported BIOS Calls

All BIOS calls that pass parameters in the AX, BX, CX, DX, SI, DI, and BP 
registers, and that contain no pointers or segment values in these registers will 
be supported by all implementations of DPMI (provided, of course, that the API is 
supported by the machine's BIOS).

For the sake of clarity and completeness, this document contains a list of every 
BIOS API that will be supported, including those that are register based APIs.  
APIs that are not register based are documented individually.

9.1 Interrupt 10h -- Video

9.1.1 Register Based Functions (supported):

AH Description
00h Set Mode
01h Set Cursor Type
02h Set Cursor Position
03h Read Cursor Position



02h Set Cursor Position
03h Read Cursor Position
04h Read Light Pen Position
05h Select Active Display Page
06h Scroll Active Page Up
07h Scroll Active Page Down
08h Read Attribute/Char at Cursor Position
09h Write Attribute/Char at Cursor Position
0Ah Write Character at Cursor Position
0Bh Set Color Palette
0Ch Write Dot
0Dh Read Dot
0Eh Write Teletype to Active Page
0Fh Read Current Video State
1Ah Read/Write Display Combination Code

9.1.2 Function 10h -- Set Palette Registers

All subfunctions of this API are supported.

9.1.3 Function 13h -- Write String

This call is supported provided the string is not longer than 2K bytes.

9.1.4 Functions that are not Fully Supported

Many of these functions have APIs that are register based.  All register 
based calls are supported.  However, any APIs that contain pointer 
parameters are not supported under DPMI.

AH DESCRIPTION
11h Character Generator
12h Alternate Select
14h Load LCD Character Font



12h Alternate Select
14h Load LCD Character Font
15h Return Physical Display Parameters
1Bh Return Functionality/State Info
1Ch Save/Restore Video State

9.2 Interrupt 11h -- Equipment Determination
Since interrupt 11h is register based, it will be supported by all implementations 
of DPMI.

COMPATIBILITY WARNING:  EISA machines will destroy the high word of the 
EAX register on machines with 80386 CPUs.

9.3 Interrupt 12h -- Memory Size Determination
Since interrupt 12h is register based, it will be supported by all implementations 
of DPMI.

9.4 Interrupt 13h -- Diskette / Fixed Disk Interface
Application programs have no reason to use this interrupt.  In any case, since 
direct disk access will not be allowed most implementations of DPMI, programs 
can not rely on these functions.



can not rely on these functions.

9.5 Interrupt 14h -- Asynchronous Communications
Since all asynchronous communication APIs are register based, they are all 
supported.

AH Description
00h Initialize Communications Port
01h Send Character
02h Receive Character
03h Read Status
04h Extended Initialize
05h Extended Communications Port Control

9.6 Interrupt 15h -- System Services

9.6.1 Register Based Functions (supported):

ah description
00h Turn Cassette Motor On
01h Turn Cassette Motor Off
40h Read/Modify Profiles
42h Request System Power-Off
43h Read System Status
44h Activate/Deactivate Internal Modem
80h Device Open
81h Device Close
82h Program Termination



81h Device Close
82h Program Termination
84h Joystick Support
86h Wait
87h Extended Memory Size
C3h Enable/Disable Watchdog Time-Out
C4h Programmable Option Select (POS)

9.6.2 Function C0h -- Return System Configuration Parameters

This call is supported.  The pointer to the system descriptor vector will be 
in ES:EBX for 32-bit programs.  

9.6.3 Function C1h -- Pointing Device Interface

This interface will not be supported under most implementations of DPMI.  
Programs that use a mouse are encouraged to use the Int 33h interface 
documented on page .

9.6.4 Functions that are Not Supported:

ah Description
02h Read Blocks from Cassette
03h Write Blocks to Cassette
0Fh Format Unit Periodic Interrupt
21h Power-On Self-Test Error Log
41h Wait for External Event
4Fh Keyboard Intercept
83h Wait Event
85h System Request Key Pressed
87h Move Block
89h Switch Processor to Protected Mode
90h Device Busy
91h Interrupt Complete
C1h Return Extended BIOS Data Area Seg



91h Interrupt Complete
C1h Return Extended BIOS Data Area Seg

9.7 Interrupt 16h -- Keyboard
Since all keyboard APIs are register based, they are all supported.

ah description
00h Keyboard Read
01h Keyboard Status
02h Shift Status
03h Set Typematic Rate
04h Keyboard Click Adjustment
05h Keyboard Write
10h Extended Keyboard Read
11h Extended Keyboard Status
12h Extended Shift Status

9.8 Interrupt 17h -- Printer
Since all printer APIs are register based, they are all supported.

ah description
00h Print Character
01h Initialize the Printer
02h Read Status



02h Read Status

9.9 Interrupt 1Ah -- System-Timer and Real-Time Clock

9.9.1 Register Based Functions (supported):

AH Description
00h Read System-Timer Time Counter
01h Set System-Timer Time Counter
02h Read Real-Time Clock Time
03h Set Real-Time Clock Time
04h Read Real-Time Clock Date
05h Set Real-Time Clock Date
07h Set Real-Time Clock Alarm
08h Set Real-Time Clock Activated Power On
09h Read Real-Time Clock Alarm Status
0Ah Read System-Timer Day Counter
0Bh Set System-Timer Day Counter

9.9.2 Function 06h -- Set Real-Time Clock Alarm

Although this call is register based and therefore requires no translation 
before being passed to real mode, the caller is required to hook the real 
mode interrupt 4Ah vector to intercept the alarm interrupt.

10. Mouse Driver Interface

DPMI supports a subset of the standard Int 33h mouse driver interface for 
protected mode programs.  It may be necessary for programs to call the mouse 
driver in real mode either before switching to protected mode or by using the 



protected mode programs.  It may be necessary for programs to call the mouse 
driver in real mode either before switching to protected mode or by using the 
translation services to completely save and restore the mouse driver state.

10.1 Mouse Calls that Are Supported

10.1.1 Register Based Calls

ah description
00h Reset Mouse and Get Status
01h Show Mouse Pointer
02h Hide Mouse Pointer
03h Get Mouse Position and Button Status
04h Set Mouse Pointer Position
05h Get Button Press Information
06h Get Button Release Information
07h Set Horizontal Limits for Pointer
08h Set Vertical Limits for Pointer
0Ah Set Text Pointer Type
0Bh Read Mouse Motion Counters
0Dh Turn on Light Pen Emulation
0Eh Turn off Light Pen Emulation
0Fh Set Mickeys to Pixels Ratio
10h Set Mouse Pointer Exclusion Area
13h Set Double Speed Threshold
15h Get Mouse Save State Buffer Size
1Ah Set Mouse Sensitivity
1Bh Get Mouse Sensitivity
1Ch Set Mouse Interrupt Rate
1Dh Select Pointer Page
1Eh Get Pointer Page
20h Enable Mouse



1Eh Get Pointer Page
20h Enable Mouse
21h Reset Mouse Driver
22h Set Language for Mouse Driver
23h Get Language Number
24h Get Mouse Information

10.1.2 Function 09h -- Set Pointer Shape

This call works exactly as it would in real mode.  However, 32-bit 
programs must use ES:EDX to point to the pointer image buffer.

10.1.3 Function 0Ch -- Set User-Defined Mouse Event Handler

32-bit programs must call this function with ES:EDX = Selector:Offset of 
handler and will need to execute a 32-bit far return to return from the event 
call-back.  For both 16-bit and 32-bit programs the protected mode DS will 
not point to the mouse driver data segment when the event handler is 
called.  Do not rely on any specific value in the DS register when the event 
handler is called.

10.1.4 Functions 16h and 17h -- Save/Restore Mouse Driver State

These calls work exactly as they would in real mode.  However, 32-bit 
programs must use ES:EDX to point to the buffer.

10.2 Mouse Calls that Are Not Supported
ah description

14h Swap User-Defined Event Handlers
18h Set Alternate Event Handler
19h Get Address of Alternate Event Handler
1Fh Disable Mouse Driver



19h Get Address of Alternate Event Handler
1Fh Disable Mouse Driver

11. NETBIOS

Some implementations of DPMI support NetBIOS calls in protected mode, 
although this is not required.  Programs can determine wether or not the current 
DPMI implementation supports NetBIOS calls from protected mode by examining 
the flags returned from the Get Version call (see page ).  A program that uses 
NetBIOS and needs to run on any DPMI implementation will need to use the 
translation services documented on page .

32-bit programs can call NetBIOS if it is supported.  In this case, ES:EBX must 
be used to point to the Network Control Block (NCB).  However, pointers within 
the NCB are restricted to a 16-bit offset.  Therefore, all buffers must reside within 
the first 64K of the buffer's segment.

12. Interrupts 23h and 24h

DOS provides two interrupts that programs can hook to handle Ctrl+Break and 
critical device errors.  These interrupts are reflected to protected mode programs 
if the program hooks the interrupt in protected mode.  Although both of these 
interrupts can be used to terminate a program in real mode, they can not be used 
to terminate protected mode programs.

Protected mode Int 23h and Int 24h handlers must reside in locked memory and 
all data that they touch must also be locked.  This is required to prevent a page 
fault from occurring at a time when DOS can not be called to read the data in 
from disk.  These interrupt handlers will always be called on a locked stack.



fault from occurring at a time when DOS can not be called to read the data in 
from disk.  These interrupt handlers will always be called on a locked stack.

12.1.1 Interrupt 23h

Interrupt 23h is the DOS Ctrl+Break interrupt.  This interrupt will be reflected to 
protected mode if a protected mode interrupt handler is installed.  Unlike real 
mode DOS, the interrupt handler must return.  This interrupt can not be used to 
terminate a protected mode program and the value of the carry flag will be 
ignored when the interrupt returns.It is suggested that you set a flag in your 
program that will be examined later and then execute an iret to return from the 
interrupt.

Int 23h is ignored for protected mode programs unless it is hooked in protected 
mode.

12.1.2 Interrupt 24h

When Int 24h is called in protected mode, SS:(E)BP will point to a standard Int 
24h stack frame.  32-bit programs will be called with a 32-bit iret frame but the 
rest of the stack frame will be exactly as that of a 16-bit Int 24h.  The values on 
the stack will contain the values passed to DOS in real mode.  Therefore, the 
segment register values on the stack will be real mode segments, not selectors.

Protected mode Int 24h handlers must iret.  Since programs can not be 
terminated by a critical error handler, an attempt to abort the program (returning 
with AL=02h) will be ignored and the DOS call will be failed.  That is, a return of 
AL=02 will be converted to AL=03 by the host.

The default Int 24h handler will fail all critical errors.  Therefore, unless the 
protected mode Int 24h vector is hooked, all DOS calls that generate a critical 
error will fail.



error will fail.

13. Additional Host Support Required to Run Microsoft Windows 
in Protected Mode

13.1 "Undocumented" DOS Calls That Must Be Supported
The Windows kernel calls several DOS functions that are not documented in the 
MS-DOS Encyclopedia.  Since these calls are required to run Windows, DPMI 
servers that support the MS-DOS extensions must support them in protected 
mode.

AH=1Fh and AH=32h

These calls return a pointer in DS:BX that points to a table inside of DOS.  
~~~(WHAT ARE THEY???)~~~

AH=50h -- Get PSP

This call is identical to DOS call 62h. The host must return a selector that points
to the current PSP in BX.

AH=51h -- Set PSP

This call is used by the Windows kernel to switch PSPs when running multiple
Windows applications. The call will be made with BX=Selector of PSP to set as
current PSP. The PSP memory is guaranteed to be in the DOS addressable 1
Mb and paragraph aligned. The host must convert the base address of the
selector into a real mode segment and pass the call on to real mode DOS.

selector into a real mode segment and pass the call on to real mode DOS.

AH=52h -- Get Pointer to List of Lists

This call returns a pointer in ES:BX that points to a table inside of DOS.

AH=53h -- Translate BIOS Parameter Block

This call takes ~~~~ FIND OUT ABOUT WHICH ARE INPUT AND WHAT IS
RETURNED~~~

AH=55h -- Create PSP

This call is identical to DOS call 26h. The caller passes a selector to a 100h byte
paragraph aligned block of memory in the first Mb of linear address space. The
host must convert the selector base address into a real mode segment and pass
the call on the real mode DOS. The Windows kernel will be responsible for
creating the environment and modifying the envionrment pointer in the newly
created PSP.
~~~(CHECK OUT ALL IOCTLS)~~~~

AH=5Dh -- Server DOS Calls

~~~ DOCUMENT ALL THAT NEED TO BE SUPPORTED ~~~~

13.2 Special handling of DOS call 0
Int 21h, AH=00h is the original DOS 1.00 terminate call. DPMI programs should
always terminate using DOS call 4Ch. However, since Windows applications
have seperate PSPs, the Windows kernel must have a mechanism for terminaing
the Windows applicationsso that networks can clean up, and DOS can close
open files. The standard AH=4Ch terminate call is inappropriate for this purpose
since it would cause the kernel to be terminated.

open files. The standard AH=4Ch terminate call is inappropriate for this purpose
since it would cause the kernel to be terminated.

Under the MS-DOS extensions of DPMI, DOS call 0 terminates the current PSP
and then returns to the caller (which will be the Windows kernel). When the host
intercepts an Int 21h, AH=0 it should patch the current PSP so t~~

GDT Selector 40h Must Be Reserved
Many Windows hardware drivers use the constant selector value 40h to access
the BIOS RAM area at 0040:0000-0040:02FF. For many 3rd party drivers, GDT
selector 40h must be mapped with a linear address of 400h and a limit of 2FEh.
This compatibilty constraint applies to other DPMI applications besides Windows.
Hosts should define selector 40h as specified here or should be capable of
handling a GP fault when a program attempts to load a segment register with 40h
and substitute an appropriate selector.

NOTE TO SOFTWARE DEVELOPERS: DON'T USE THIS! Windows drivers
and applications should link to the kernel defined absolute export variable
__0040h. DPMI applications should use Int 31h function 0002h. However, for
compatibility with Windows and other DPMI applications, hosts should map
selector 40h as specified above.

Windows Must Run At Ring 3
Because of the way the Windows kernel manipulates memory handles, it must
always run at Ring 3.

always run at Ring 3.

13.1 Direct Disk I/O
Windows Enhanced and Standard mode support interrupts 25h, 26h, and a
subset of Int 13h diskette functions so that the File Manager can format diskettes.
Application programs have no reason to use either of these interrupts. DPMI
hosts must support these functions if they wish allow diskettes to be formatted
using the Windows file manager. In any case, if these functions are not
supported then appropriate error codes should be returned when these APIs are
called.

Windows supports a subset of the diskette functions that are used by the File
Manager to format diskettes. (~~WHAT ARE THEY~~)

