
DOS PROTECTED MODE INTERFACE (DPMI)
SPECIFICATION

Protected Mode API For DOS Extended Applications
Version 0.9

Printed April 23,1990

Jeff Parsons
PCjs.org

TABLE OF CONTENTS

1 . I n t r o d u c t i o n 1
2 . G e n e r a l N o t e s f o r P r o t e c t e d M o d e P r o g r a m s 4

2 . 1 V i r t u a l D O S E n v i r o n m e n t s 5
2 . 1 . 1 N o V i r t u a l i z a t i o n 5
2 . 1 . 2 P a r t i a l V i r t u a l i z a t i o n 5
2 . 1 . 3 C o m p l e t e V i r t u a l i z a t i o n |

2 . 2 D e s c r i p t o r M a n a g e m e n t 6
2 . 3 I n t e r r u p t F l a g M a n a g e m e n t 7
2 . 4 I n t e r r u p t s °

2 . 4 . 1 H a r d w a r e I n t e r r u p t s °
2 . 4 . 2 S o f t w a r e I n t e r r u p t s • • »

2 . 5 V i r t u a l M e m o r y a n d P a g e L o c k i n g 1 0
3 . M o d e a n d S t a c k S w i t c h i n g] \

3 . 1 S t a c k s a n d S t a c k S w i t c h i n g \ *
3 . 1 . 1 P r o t e c t e d M o d e S t a c k 1 2
3 . 1 . 2 L o c k e d P r o t e c t e d M o d e S t a c k 1 2
3 . 1 . 3 R e a l M o d e S t a c k 1 2
3 . 1 . 4 D P M I H o s t R i n g 0 S t a c k 1 2

3 . 2 D e f a u l t I n t e r r u p t R e fl e c t i o n 1 3
3 . 3 M o d e S w i t c h i n g J J
3 . 4 S t a t e S a v i n g • • n b

4 . E r r o r H a n d l i n g • • • 1 6
5 . L o a d i n g D P M I C l i e n t s a n d E x t e n d e d A p p l i c a t i o n s 1 7

5.1 Obtaining the Real to Protected Mode Switch Entry Point 18
5.2 Calling the Real to Protected Mode Switch Entry Point 19

6 . T e r m i n a t i n g A P r o t e c t e d M o d e P r o g r a m 2 2
7 . M o d e D e t e c t i o n 2 3
8 . L D T D e s c r i p t o r M a n a g e m e n t S e r v i c e s 2 4

8 . 1 A l l o c a t e L D T D e s c r i p t o r s 2 5
8 . 2 F r e e L D T D e s c r i p t o r *
8 . 3 S e g m e n t t o D e s c r i p t o r , 2 /
8 . 4 G e t N e x t S e l e c t o r I n c r e m e n t V a l u e * °
8 . 5 R e s e r v e d S u b - f u n c t i o n s 2 9
8 . 6 G e t S e g m e n t B a s e A d d r e s s £ u
8 . 7 S e t S e g m e n t B a s e A d d r e s s * *
8 . 8 S e t S e g m e n t L i m i t * *
8 . 9 S e t D e s c r i p t o r A c c e s s R i g h t s * *
8 . 1 0 C r e a t e C o d e S e g m e n t A l i a s D e s c r i p t o r * >
8 . 1 1 G e t D e s c r i p t o r | °
8 . 1 2 S e t D e s c r i p t o r % '
8 . 1 3 A l l o c a t e S p e c i f i c L D T D e s c r i p t o r o °

9 . D O S M e m o r y M a n a g e m e n t S e r v i c e s 3 9
9 . 1 A l l o c a t e D O S M e m o r y B l o c k * V
9 . 2 F r e e D O S M e m o r y B l o c k J J
9 . 3 R e s i z e D O S M e m o r y B l o c k 4 *

1 0 . I n t e r r u p t S e r v i c e s 4 3
1 0 . 1 G e t R e a l M o d e I n t e r r u p t V e c t o r 4 4
1 0 . 2 S e t R e a l M o d e I n t e r r u p t V e c t o r 4 5
1 0 . 3 G e t P r o c e s s o r E x c e p t i o n H a n d l e r Ve c t o r 4 6
1 0 . 4 S e t P r o c e s s o r E x c e p t i o n H a n d l e r Ve c t o r 4 7
1 0 . 5 G e t P r o t e c t e d M o d e I n t e r r u p t V e c t o r 5 0
1 0 . 6 S e t P r o t e c t e d M o d e I n t e r r u p t V e c t o r 5 1

1 1 . T r a n s l a t i o n S e r v i c e s 5 2
1 1 . 1 S i m u l a t e R e a l M o d e I n t e r r u p t 5 5
11.2 Call Real Mode Procedure With Far Return Frame 56
11 .3 Ca l l Rea l Mode P rocedu re W i th I r e t F rame 57
1 1 . 4 A l l o c a t e R e a l M o d e C a l l - B a c k A d d r e s s 5 8
1 1 . 5 F r e e R e a l M o d e C a l l - B a c k A d d r e s s 6 2
1 1 . 6 G e t S t a t e S a v e / R e s t o r e A d d r e s s e s 6 3
1 1 . 7 G e t R a w M o d e S w i t c h A d d r e s s e s 6 5

1 2 . G e t V e r s i o n 6 6
1 3 . M e m o r y M a n a g e m e n t S e r v i c e s 6 7

1 3 . 1 G e t F r e e M e m o r y I n f o r m a t i o n 6 8
1 3 . 2 A l l o c a t e M e m o r y B l o c k 7 0
1 3 . 3 F r e e M e m o r y B l o c k 7 1
1 3 . 4 R e s i z e M e m o r y B l o c k 7 2

1 4 . P a g e L o c k i n g S e r v i c e s 7 3
1 4 . 1 L o c k L i n e a r R e g i o n 7 4
1 4 . 2 U n l o c k L i n e a r R e g i o n 7 5
1 4 . 3 M a r k R e a l M o d e R e g i o n a s P a g e a b l e 7 6
1 4 . 4 R e l o c k R e a l M o d e R e g i o n 7 7
1 4 . 5 G e t P a g e S i z e 7 8

1 5 . D e m a n d P a g i n g P e r f o r m a n c e T u n i n g S e r v i c e s 7 9
1 5 . 1 R e s e r v e d S u b f u n c t i o n s 8 0
1 5 . 2 M a r k P a g e a s D e m a n d P a g i n g C a n d i d a t e 8 1
1 5 . 3 D i s c a r d P a g e C o n t e n t s 8 2

1 6 . P h y s i c a l A d d r e s s M a p p i n g 8 3
1 7 . V i r t u a l i n t e r r u p t S t a t e F u n c t i o n s 8 4

1 7 . 1 G e t a n d D i s a b l e V i r t u a l I n t e r r u p t S t a t e 8 5
1 7 . 2 G e t a n d E n a b l e V i r t u a l I n t e r r u p t S t a t e 8 6
1 7 . 3 G e t V i r t u a l I n t e r r u p t S t a t e 8 7

1 8 . G e t V e n d o r S p e c i fi c A P I E n t r y P o i n t 8 8
1 9 . D e b u g R e g i s t e r S u p p o r t 8 9

1 9 . 1 S e t D e b u g W a t c h p o i n t 9 0
1 9 . 2 C l e a r D e b u g W a t c h p o i n t 9 1
1 9 . 3 G e t S t a t e o f D e b u g W a t c h p o i n t 9 2
1 9 . 4 R e s e t D e b u g W a t c h p o i n t 9 3

2 0 . O t h e r A P I s 9 4
2 1 . N o t e s F o r D O S E x t e n d e r s 9 5

2 1 . 1 I n i t i a l i z a t i o n o f E x t e n d e r s 9 6
2 1 . 2 I n s t a l l i n g A P I E x t e n s i o n s 9 6
2 1 . 3 L o a d i n g t h e A p p l i c a t i o n P r o g r a m 9 6
2 1 . 4 P r o v i d i n g A P I E x t e n s i o n s 9 7

1. INTRODUCTION

The DOS Protected Mode Interface (DPMI) was defined to allow DOS programs to
access the extended memory of PC architecture computers while maintaining
system protection. DPMI defines a specific subset of DOS and BIOS calls that
can be made by protected mode DOS programs. It also defines a new interface
via software interrupt 31 h that protected mode programs use to allocate memory,
modify descriptors, call real mode software, etc. Any operating system that
currently supports virtual DOS sessions should be capable of supporting DPMI
without affecting system security.

Some DPMI implementations can execute multiple protected mode programs in
independent virtual machines. Thus, DPMI applications can behave exactly like
any other standard DOS program and can, for example, run in the background orin a window (if the environment supports these features). Programs that run in
protected mode also gain all the benefits of virtual memory and can run in 32-bit
flat model if desired.

Throughout this document, the term "real mode" software is used to refer to code
that runs in the low 1 megabyte address space and uses segmenfcoffset
addressing. Under many implementations of DPMI, so called real mode software
is actually executed in virtual 8086 mode. However, since virtual 8086 mode is a
very close approximation of real mode, we will refer to it as real mode in thisdocument

DPMI services are only available to protected mode programs. Programs running
in real mode can not use these services. Protected mode programs must use the
service described on page 17 to enter protected mode before calling Int 31 h
services.

All Int 31 h functions will modify flags and the AX register. All other registers will be
preserved unless they are specified as return values. Unsupported calls will
return with the carry flag set. Since Int 31 h is set up as a trap gate, the interrupt
flag will not be modified by any Int 31 h calls except for memory management and
interrupt flag management calls. All memory management calls may enable
interrupts. Interrupt flag management calls will modify the interrupt flag as
specified by the call. All Int 31 h services are reentrant.
Some implementations of DPMI can run 32-bit 80386 specific programs. DPMI
functions that take pointers as parameters will use the extended 32-bit registers
for offsets (for example, ES:EDI instead of ES:DI) when running 32-bit mode
programs. The high word of the 32-bit registers will be ignored when running
16-bit protected mode programs.

DPMI services are provided by what will be referred to as the DPMI host program.
The program(s) that use DPMI services are called DPMI clients. Generally, DPMI
clients are two categories:

o Extended Applications
o Applications that use DPMI directly

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 1

It is believed that most DPMI applications will be extended applications. Extended
applications are bound with an extender that is the actual DPMI client and the
application calls extender services that then are translated by the client into DPMI
calls. The advantage of an extended application over one that calls DPMI
services directly is that generally an extender will support more than just DPMI. In
fact it is recommended that extenders look for extension services in the following
order:

o D P M I
o V C P I / E M S
o X M S
o Top-down (Int 15h)

An extender can provide a single set of APIs to the actual application and then
translate them to the services that are provided. Where the host extension
services are "lacking" in a particular function the extender must provide that
function for the application.

Figure 1 on page 3 shows a picture of how this works. The application code sits
on top of a set of base extender functions and APIs. The extender then has
separate modules for each type of extension service and code to "fill in the slack"
where services are lacking. An example of a typical extender service is protected
mode program loading. The actual shipped application is the application code
bound in with the extender and all of its styles of client support.

The host support is generally an extension of the base OS functions or a device
driver used to extend the base OS functions.

This document is intended to provide a definition of the DPMI services that a
DPMI host would be required to implement and that a DPMI client would use.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 2

Figure 1. Application/Extender/Client/Host/OS structure

Application Code

Extender Base (including APIs)

DPMI
c l i e n t

VCPI
c l i e n t

XMS
c l i e n t

Top-down
c l i e n t

DPMI
host VCPI

XMS
EMS Top-down

(Int 15h)

Operating System (e.g. DOS)

Anril 23.1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 3

2. GENERAL NOTES FOR PROTECTED MODE PROGRAMS

There are a few basic differences between real mode and protected mode that
need to be addressed to convert a real mode program to run in protected mode.

Programs run at a protection level that prevents them from executing privileged
instructions such as /got, licit, etc. The DPMI interface is the only method
application programs have for modifying system structures such as descriptors.

While DPMI defines a specific set of functions that will be supported by all
implementations, there may be minor differences in individual implementations.
Programmers should refer to the notes for their DPMI implementation for
documentation on detecting the presence of and calling vendor specific
extensions. However, any application that is written to adhere only to standard
DPMI calls should work correctly under all implementations of DPMI.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 4

2.1 Virtual DOS Environments

Many DPMI implementations are simulated "virtual DOS" sessions. In other
words, the DOS interface and environment presented to the program are not
actually the native interface of the operating system. Hardware interrupts, I/O,
and processor exceptions will be virtualized by the operating system. This
means, for example, that a DPMI program may receive a simulated keyboard
interrupt and read simulated I/O from the keyboard controller ports.
In these environments, actual hardware interrupts will be handled by the operating
svstem. The physical interrupts will be invisible to the DPMI application program.
If the operating system so chooses, it may reflect a virtual interrupt to the DPMI
program. The DPMI program does not need to know, nor should rt pare, if this is
the case. From the program's point of view, the interrupt looks exactly like a real
interrupt. The operating system will also virtualize I/O to the interrupt controller
ports and any other simulated devices.
There are basically three levels of virtualization that DPMI implementations can
provide:
2.1.1 No Virtualization

In general, stand-alone single tasking DPMI implementations will not virtualize any
hardware devices. These hose extension programs will execute as standard DOS
real mode drivers or programs. Extenders which use the services provided by
these DPMI host drivers will translate protected mode DOS calls to real mode
DOS calls Normally these extenders will invoke DPMI services to return the
processor to real mode (instead of virtual 8086 mode) when calling DOS.
2.1.2 Partial Virtualization

Some environments that execute under DOS will virtualize hardware devices
provide virtual memory, or provide other services that require virtualization of
some hardware devices. Under these environments, DPMI applications will
always run at a non-privileged ring (usually ring 3). Some or all hardware
interrupts will be virtualized, some or all I/O will be virtualized, and virtual memory
may be supported. Under these implementations, page locking services usually
must be used to lock interrupt and exception handling code.

2.1.3 Complete Virtualization

These environments provide a completely simulated DOS environment. The
native operating system is something other than MS-DOS. Under these
implementations of DPMI, all devices will be virtualized to some extent. Normally,
page locking services will be ignored by these implementations since all physical
device interrupt and I/O handling will be performed by the operating system.
Programs will always run at a non-privileged ring.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 5

2.2 Descriptor Management

Protected mode code segments can not be modified. This requires programs to
allocate an alias data descriptor if they need to store data in a code segment.

Segment arithmetic that works in real mode does not work in protected mode.
Some calls will return a range of descriptors. For example, if a 16-bit mode
program allocates a block of memory larger than 64K, the call will allocate several,
contiguous descriptors. Each descriptor will have a 64K limit except for the final
descriptor which will have a limit that contains the remainder of the block. The callwill return the first selector in the array. To get to the next selector, your program
must add the value returned by Int 31 h call 0003h (see page 28).

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 6

2.3 Interrupt Flag Management

The popf and iret instructions may not modify the state of the interrupt flag since
most DPMI implementations will run programs with IOPL < DPL Programs must
execute cli or sti to modify the interrupt flag state.

This means that the following code sequence will leave interrupts disabled:

(Assume interrupts are enabled at this point)

pushf
c l i

p o p f ; I n t e r r u p t s a r e s t i l l O F F !
Note that since some implementations of DPMI will maintain a virtual interrupt
state for protected mode DOS programs, the current value of the interrupt flag
may not reflect the current virtual interrupt state. Protected mode programs
should use the virtual interrupt state services to determine the current interrupt
flag state (see page 84).
Since cli and sti are privileged instructions, they will cause a protection violation
and the DPMI provider will simulate the instruction. Because of the overhead
involved in processing the exception, cli and sti should be used as little as
possible. In general, you should expect either of these instructions to require at
least 300 clocks.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 7

2.4 Interrupts

Protected mode programs can hook both hardware and software interrupts using
the DPMI get and set protected mode interrupt vector functions (see page 50). All
interrupts from hardware devices such as the timer or keyboard controller will
always be reflected to the protected mode interrupt handler first. If the protected
mode handler jumps to or calls the previous interrupt handler then the interrupt
will be reflected to real mode.

As in real mode, interrupt procedures can either service the interrupt and iret or
they can chain to the next handler in the interrupt chain by executing pushf/call or
by jumping to the next handler. The final handler for all protected mode interrupts
will reflect the interrupt to real mode.

When an interrupt is reflected to real mode, the EAX, EBX, ECX, EDX, ESI, EDI,
EBP registers, and flags will all be passed from protected to real mode unaltered.
The segment registers will contain undefined values unless an API translator
(such as a DOS or BIOS translator) explicitly sets a real mode segment register.
DPMI will automatically provide a real mode stack for interrupts that are reflected
to real mode.

2.4.1 Hardware Interrupts

The interrupt controllers are mapped to the system's default interrupts. On an
IBM AT-compatible system, for example, the master interrupt controller is
programmed with a base interrupt of 8 and the slave controller has a base of 70h.
The virtualized interrupt controllers can be reprogrammed; the base setting may
be examined in protected mode with Int 31 h function 0400h.

Hardware interrupt procedures and all of their data must reside in locked
memory. All memory that is touched bv hardware interrupt hooks must be
locked. The handler will always be called on a locked stack. See page 10 for
more details.

As in real mode, hardware interrupt handlers are called with interrupts disabled.
Since iret will not restore the interrupt flag, hardware interrupt hooks must execute
an sti before executing iret or else interrupts will remain disabled.

Protected mode hardware interrupt handlers will always be called even for
interrupts that occur in real mode. The last hook on the protected mode interrupt
chain will reflect the interrupt to real mode.

Protected mode hardware interrupt handlers that need to call software running in
real mode must either be sure that the real mode software that they are calling will
not modify segment registers or they must use the state save service (see page
63) to save and restore the real mode segment registers. However, any interrupt
handler that executes completely in protected mode, or uses translation services
0300h, 0301 h, or 0302h does not need to save the real mode register state.
Therefore, this is not an issue for most interrupt handlers.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 8

For compatibility with older systems, computers with two interrupt controllers
have the BIOS redirect one of the interrupts from the slave controller into the
range of the master controller. For example, devices jumpered for IRQ 2 on IBM
AT-compatible computers actually interrupt on IRQ 9 (interrupt 71 h). In real
mode, the BIOS on these systems will convert interrupt 71 h to Int OAh and EOI the
slave controller. A protected mode program that needs access to the redirected
interrupt may use variations on either of these techniques:

1 Hook the target interrupt in real mode. This takes advantage of the
built in redirection. This is robust on systems where other software
has reprogrammed the interrupt controllers, or where the slave
interrupt controller may be absent.

2 Hook the actual interrupt in both real and protected mode. In this
case, the program must EOI both the slave and master interrupt
controllers since the BIOS will not get control. This is more efficient
in that there will not be any unnecessary switches to real mode.

2.4.2 Software Interrupts

Most software interrupts executed in real mode will not be reflected to the
protected mode interrupt hooks. However, some software interrupts are also
reflected to protected mode programs when they are called in real mode. These
are:

INT

1Ch
23h
24h

DESCRIPTION

BIOS timer tick interrupt
DOS Ctrl+C interrupt
DOS critical error interrupt

Programs should not terminate during interrupts that were reflected from real
mode. Terminating the program at this point may prevent the DPMI host from
cleaning up properly.
Of all software interrupts, only Ints 00h-07h will be called with virtual interrupts
disabled. For these interrupts, the handler should return with interrupts enabled.
All other interrupts will not modify the interrupt flag state.

Since most software interrupts that are executed in real mode are not reflected to
protected mode interrupt hooks, programs would be required to install a real
mode interrupt hook to monitor these interrupts.

ADril 23.1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 9

2.5 Virtual Memory and Page Locking

Many implementations of DPMI support virtual memory. In these environments, it
will be necessary to lock any memory that can be touched while executing inside
of DOS. This is necessary because it may not be possible for the operating
system to demand load a page if DOS is busy.

Some DPMI implementations will not call DOS to read or write virtual memory to
disk and under these implementations the page locking services may be ignored.
Since the entire DPMI session is virtualized, a page fault can be handled at any
point while executing the program. However, under all implementations, DPMI
applications should lock interrupt code and data. The lock calls will always return
success under implementations that ignore these calls.

A n r i i o s - i c o n n n s D P n T P ^ T P n M n n p i n t p r p a o f s o p r i n r i ATi n M n q P a n e 1 0

3. MODE AND STACK SWITCHING

This section contains an overview of how DPMI hosts switch between protected
and real mode and handle stack switching. It is important to understand the host
maintains the state of the client to prevent overwriting stack data or modifying
segment registers.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 11

3.1 Stacks and Stack Switching

Every DPMI task runs on four different stacks: An application ring protected
mode stack, a locked protected mode stack, a real mode stack, and a DPMI host
ring 0 stack.
The protected mode stack is the one the DPMI client was running on when it
switched into protected mode by calling the protected mode entry point (although
the client can switch to another protected mode stack if desired). The locked
protected mode stack is provided by the DPMI server and is used for simulatinghardware interrupts and processing real mode call-backs. The DPMI host
provides the real mode stack, which is usually located in the data area provided
by the client. The ring 0 stack is only accessible by the DPMI host. However, this
stack may contain state information about the currently running program.

3.1.1 Protected Mode Stack

This is the stack that the client uses for normal execution in protected mode. The
protected mode stack of a DPMI client can be unlocked if desired. Software
interrupts executed in protected mode will be reflected on this stack.
3.1.2 Locked Protected Mode Stack

During hardware interrupts, Int 1Ch, Int 23h, Int 24h, exceptions, and real modecall-back handling in protected mode, the DPMI will host automatically switch to a
locked protected mode stack. When the interrupt or call returns, the host will
return to the original protected mode stack. Note that there is only one, 4K,
locked stack provided by the host. The stack will be switched onto the first time
an interrupt or call is reflected to protected mode, and will be switched away from
when the client returns. Subsequent nested interrupts or calls will not cause a
stack switch. Software interrupts do not automatically switch stacks.

3.1.3 Real Mode Stack

The DPMI host will provide the client with a real mode stack that is at least 200h
bytes in size and will always be locked. Interrupts that are reflected into real
mode, as well as calls made using the translation services, will be reflected on this
stack. DPMI hosts will not automatically switch stacks for hardware interrupt
processing in real mode since DOS performs this function automatically.
3.1.4 DPMI Host Ring 0 Stack

DPMI hosts will normally have a stack associated with each DPMI task. The DPMI
client will not be able to access this stack in any way - it is used by the host for
execution at ring 0 to handle interrupts and exceptions. This stack will sometimes
be used to store state information while switching modes. For example, the
original SS:ESP of the protected mode program could be saved on the ring 0
stack while the DPMI host switches onto the locked protected mode stack.

Aoril 23.1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 12

3.2 Default Interrupt Reflection

DPMI hosts provide interrupt vectors for all 100h (256 decimal) interrupts for
protected mode clients. When the DPMI client initializes, all interrupt vectors will
point to code that will automatically reflect the interrupt to real mode (except for Int
31h and Int 21h, AH=4Ch). When a default interrupt reflection handler is
executed it will switch to real mode, preserving the EAX, EBX, ECX, EDX, ESI,
EDI, and EBP registers and flags, and reflect the interrupt in real mode. When the
real mode interrupt returns, the default interrupt refle^'OJl^^r'L^^r^^o?
protected mode and return with the modified values of EAX, EBX, ECX, EDX, Eb\,
EDI EBP, and flags. Segment registers and the stack pointer will not be passed
between modes. Therefore, any API that passes pointers or information in
segment registers will need to be translated by a DOS extender.

Anril 23.1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 13

3.3 Mode Switching

There are three different ways a client can force a mode switch between protected
and real mode:

o Execute the default interrupt reflection handler
o Use the translation services to call real mode code
o Use a real mode call-back to switch from real to protected mode
o Use the raw mode switch functions

All mode switches except for the raw mode switches will save some information
on the DPMI hosts ring 0 stack. This means that programs should not terminate
while in nested mode switches unless they are using the raw mode switching
services. However, even programs that use raw mode switches should not
attempt to terminate from a hardware interrupt or exception handler since the
DPMI host performs automatic mode and stack switching to provide these
services.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 14

3.4 State Saving

Because DPMI hosts switch stacks automatically across mode switches, it is
sometimes necessary to use the state save/restore functions while using the raw
mode switch services. The host will maintain information on the "other" mode's
current state. This information will include the CS:(E)IP, SS:(E)SP, and segment
register values. Since the DPMI client has no way to directly access these values,it will need to call the state saving functions when performing nested mode
switches.

For example, during hardware interrupts, the DPMI host will preserve the real
mode's segment registers, CS:EIP, and SS:ESP on the ring 0 stack. However,
they are not pushed on any stack in the VM ~ They are only visible at ring 0.
When the raw mode switch functions are called they will overwrite the information
saved by the host. At this point, the program would return to the wrong address
when the interrupt returned. For more information on state saving, refer to the
documentation on page 63.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 15

4. ERROR HANDLING

Most Int 31 h calls can fail. The DPMI 0.9 specification does not specify error
return codes for most calls. When a call fails it will set the carry flag and return
with the value in AX unmodified unless otherwise specified. However, future DPMI
implementations will return error codes in the AX register. All specific error codeswill have the high bit (bit 15) set. If a function returns with carry set and the high
bit of AX clear, it should be treated as a general failure. Specific error codes will
allow programs running under future DPMI implementations to take appropriate
corrective action in some cases.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 16

5. LOADING DPMI CLIENTS AND EXTENDED APPLICATIONS

All DPMI applications begin execution in real mode. An application must run first
as a standard real mode DOS program but it can switch to protected execution by
making a few simple calls.
DPMI does not define an executable file format for protected mode programs.
Instead, programs must provide their own mechanism for loading and fixing up
protected mode code.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 17

S.1 Obtaining the Real to Protected Mode Switch Entry Point

This function can be called in real mode to detect the presence of DPMI
services and to obtain an address that can be used to begin execution in
protected mode.

To Call

AX = 1687h
Execute an Int 2Fh (not an Int 31 h)

Returns

If function was successful:
AX = 0
BX = Flags

Bit 0 = 1 if 32-bit programs are supported
CL = Processor type

02h = 80286
03h = 80386
04h = 80486

DH = DPMI major version number
DL = DPMI minor version number
SI = Number of paragraphs required for DPMI host private data (may be 0)
ES:DI = Address of procedure to call to enter protected mode

If function was not successful:
AX!=0

Programmer's Notes
o This function does not perform the actual transition into protected

mode. You need to call the address returned in ES:DI, after
allocating the private data area for the DPMI host, to perform the
actual real to protected mode switch.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 18

5.2 Calling the Real to Protected Mode Switch Entry Point

After using Int 2Fh function 1687h, to obtain the protected mode entry
point, the DPMI client must call the entry point address as described in thissection.

To Call

AX = Flags
Bit 0 = 1 if program is a 32-bit application

ES = Real mode segment of DPMI host data area. This must be the size
of the data area returned in SI from the previous function. ES will be
ignored if the required data size is zero.Call the address returned in ES:DI by the previous function

Returns

If function was successful:
Carry flag is clear.
Program is now executing in protected mode.
CS = 16-bit selector with base of real mode CS and a 64K limit
SS = Selector with base of real mode SS and a 64K limit
DS = Selector with base of real mode DS and a 64K limit
ES = Selector to program's PSP with a 100h byte limit
FS and GS = 0 (if running on an 80386 or 80486)
If the program is a 32-bit application the high word of ESP will be 0
All other registers are preserved

If function was not successful:
Carry flag is set.
Program is executing in real mode

Programmer's Notes
o Once in protected mode, all Int 31 h calls that are supported by

DPMI can be called.
o To terminate the program, execute an Int 21 h with AH=4Ch and

AL=Error code. This is the standard DOS exit function. Do not use
any other DOS termination call -- Only AH=4Ch is supported under
DPMI.

o Under different implementations of DPMI the privilege ring of a
program will change. Programs should make no assumptions
about the ring at which they will run. When creating descriptors,
programs should set the DPL of the descriptor to the same ring astheir initial code segment. Use the lar instruction to determine the
protection ring of your program's code segment. AH descriptors
created by your program should be set to the same protection level.

o Programs that specify that they are 32-b'rt applications will initially
run with a 16-bit code segment. Stack and data selectors for 32-bit
programs will be 32-bit (the Big bit will be set). However, all Int 31 hcalls will require 48-bit pointers even though the program is running
in a 16-bit code segment.

ADril 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 19

Unless you have explicitly enabled the A20 address line through the
XMS interface, do not assume that memory from 1 Mb to 1 Mb+64K-
16 (the High Memory Area) is addressable once your program is
running in protected mode. If you want to be able to access theHMA then you must enable the A20 through XMS before entering
protected mode. XMS calls are not supported in protected mode.
Note that this restriction is only important for software that wishes to
access the HMA. Under all implementations of DPMI the physical
A20 address line will always be enabled while executing protected
mode code. However, some 80386 specific DPMI implementations
simulate 1Mb address wrap for compatibility reasons. Under these
DPMI implementations, the HMA will not be accessible unless the
A20 is enabled through the XMS interface.
The environment pointer in the current program's PSP will
automatically be converted to a descriptor. If you want to free the
program's environment memory, you must do so before entering
protected mode. In this case, the environment pointer descriptor
will point to garbage and should not be used. The DPMI client may
change the environment pointer in the PSP after entering protectedmode but it must restore it to the selector created by the DPMI host
before terminating.
The caller is allowed to modify or free the DS, SS, and CS
descriptors allocated by this call. You may not modify the PSP
descriptor or environment pointer descriptor in the PSP. See page
26 for information on freeing descriptors.
Note that if DS=SS on entry to this call then only one descriptor will
be allocated for both DS and SS. In this case, for example, if you
changed the base of the DS descriptor you would also change the
base of the stack segment.
For some hosts it may be a good idea for protected mode programs
to use some or all of the real mode memory allocated to the real
mode program by DOS for protected mode code or data. Protected
mode programs that use memory in the first 1Mb should mark the
memory as pageable using Int 31 h 0602h. See page 76 for details.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 20

Example Code

Get the entry point address and save it
mov
i n t
t e s t
j n z
mov
mov

ax, 1687h
2Fh
ax, ax
Cant_Enter_PMode
[PMode_Entry_Seg],
[PMode_Entry_Off] ,

es
d i

Allocate memory for use by DOS extender if necessary
NOTE: This code assumes that the program has already

shrunk its memory block so that the DOS
memory allocation call will work

t e s t s i , s i
j z Enter_PMode_Now
mov bx, s i
mov ah, 48h
i n t 21h
j c Cant_EnterJPMode
mov es, ax

Enter protected mode as a 16-bit program

Enter_PMode_Now:x o r a x , a x
call DWORD PTR [PMode_Entry_Off]
j c C a n t _ E n t e r _ P M o d e

The program is running in protected mode now!
Protected mode initialization code would go here.
Mark program's real mode memory as pageable, etc.

Quit the program and return to real mode DOS
m o v a x , 4 C O O h
i n t 2 1 h

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 21

6. TERMINATING A PROTECTED MODE PROGRAM

To terminate a protected mode program execute an Int 21 h with AH=4Ch jn
protected mode. You can return an error code in the AL register. This is the
standard DOS terminate API but it must be executed in protected mode to allow
the DPMI host to clean up any data structures associated with the protected
mode program.

Programs should not be terminated from a hardware interrupt, exception handler,
or real mode call-back. Programs should only be terminated from their main
thread of execution to allow the DPMI host to clean up properly. However, DOS
extenders that use the raw mode switch services for all mode transitions can
execute the terminate call after switching from real to protected mode.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 22

7. MODE DETECTION

It is possible to write a program or library that can run in either real or protected
mode. This function is supplied so that bimodal code can detect at run time
whether it is running under protected mode. Code that only runs in protected
mode does not need to perform this test.

To Call

AX = 1686h
Execute an Int 2Fh (not an Int 31 h)

Returns

If executing in protected mode under DPMI:
AX = 0

If executing in real mode or not under DPMI then:
AX!=0

Programmer's Notes
This call will return AX = 0 when the caller is running in protected
mode. It will return AX non-zero even when running under
environments that support DPMI if the caller is in real (virtual 8086)
mode. See page 17 for information on entering protected mode.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 23

8. LDT DESCRIPTOR MANAGEMENT SERVICES

The LDT descriptor management services provide interfaces for allocating,
freeing, creating, locking and unlocking protected mode descriptors in the current
task's Local Descriptor Table (LDT).

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 24

8,1 Allocate LDT Descriptors

This function is used to allocate one or more descriptors from the task's
Local Descriptor Table (LDT). The descriptors) allocated must be
initialized by the application.

To Call

AX = 0000h
CX = Number of descriptors to allocate

Returns

If function was successful:
Carry flag is clear.
AX = Base selector

If function was not successful:
Carry flag is set.

Programmer's Notes
o If more than one descriptor was requested, AX will contain the first

of a contiguous array of descriptors. You should add the value
returned by function 0003h (see page 28) to get to the next selector
in the array.

o The descriptor will be set to present data type, with a base and limit
of zero.

o It is up to the caller to fill in the descriptors.
o The privilege level of descriptors will match the application's code

segment privilege level. When modifying descriptors, always set the
DPL to the same privilege ring as your program's code segment.
Use the lar instruction to determine the privilege of a descriptor.

ADril 23.1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 25

8.2 Free LDT Descriptor

This function is used to free descriptors that were allocated through the
Allocate LDT Descriptors function.

To Call

AX = 0001h
BX = Selector to free

Returns

If function was successful:
Carry flag is clear.
If function was not successful:
Carry flag is set.

Programmer's Notes

Arrays of descriptors are freed by calling this function for each of the
individual descriptors.
It is valid to free the descriptors allocated for the program's initial
CS, DS, and SS. Other descriptors that were not allocated by
function OOOOh should never be freed by this function unless
otherwise specified.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 26

8.3 Segment to Descriptor

This function is used to convert real mode segments into descriptors that
are addressable by protected mode programs.

To Call

AX = 0002h
BX = Real mode segment address

Returns

If function was successful:
Carry flag is clear.
AX = Selector mapped to real mode segment

If function was not successful:
Carry flag is set.

Programmer's Notes
o Multiple calls to this function with the same segment will return the

s a m e s e l e c t o r . ■
o Descriptors created by this function should never be modified or

freed. For this reason, you should use this function sparingly. If
your program needs to examine various real mode addresses using
the same selector you should allocate a descriptor and change the
base using the Set Segment Base Address function instead of using
this function.

o The descriptor's limit will be set to 64K.
o The intent of this function is to allow programs easy access to

commonly used real mode segments such as 40h and AOOOh. Do
not use this service to obtain descriptors to private data areas.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 27

8.4 Get Next Selector Increment Value

Some functions such as allocate LDT descriptors and allocate DOS
memory can return more than one descriptor. You must call this functionto determine the value that must be added to a selector to access the next
descriptor in the array.

To Call
AX = 0003h

Returns

Carry flag clear (this function always succeeds)
AX = Value to add to get to next selector

Programmer's Notes
o Do not make any assumptions about the value this function will

return.
o The increment value returned will be a power of two.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 28

8.5 Reserved Subfunctions

Functions 0004h and 0005h are reserved and should not be called.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 29

8.6 Get Segment Base Address

This function returns the 32-bit linear base address of the specified
segment.

To Call

AX = 0006h
BX = Selector

Returns

If function was successful:
Carry flag is clear.
CX:DX = 32-bit linear base address of segment

If function was not successful:
Carry flag is set.

Programmer's Notes
o This function will fail if the selector specified in BX is invalid

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 30

8.7 Set Segment Base Address

This function changes the 32-bit linear base address of the specified
selector.

To Call

AX = 0007h
BX = SslGctor
CX:DX = 32-bit linear base address for segment

Returns

If function was successful:
Carry flag is clear.
If function was not successful:
Carry flag is set.

Programmer's Notes
o This function will fail if the selector specified in BX is invalid.
o Your program should only modify descriptors that were allocated

through the Allocate LDT Descriptors function.
o The high 8 bits of the base address (contained in CH) will be

ignored by 16-bit implementations of DPMI. This is true even when
running on 80386 machines.

Anril 23.1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 31

8.8 Set Segment Limit

This function sets the limit for the specified segment.

To Call

AX = 0008h
BX = Selector
CX:DX = 32-bit segment limit

Returns

If function was successful:
Carry flag is clear.
If function was not successful:
Carry flag is set.

Programmer's Notes
This function will fail if the selector specified in BX is invalid or the
specified limit could not be set. 16-b'rt DPMI implementations can
not set segment limits greater than OFFFFh (64K) so CX must be
zero when calling this function under these implementations of
DPMI.
Segment limits greater than 1 meg must be page aligned. That is,
limits greater than one megabyte must have the low 12 bits .set
Your program should only modify descriptors that were allocated
through the Allocate LDT Descriptors function.
To get the limit of a segment you should use the instruction Isl (load
segment limit) which is supported on 80286 and 80386 machines.
Note that on 80386 machines you will need to use the 32-bit form of
Isl if the segment has a limit greater than 64K.

Aorll23.1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 32

8.9 Set Descriptor Access Rights

This function allows a protected mode program to modify the access rights
and type fields of a descriptor.

To Call

AX = 0009h
BX = Selector
CL = Access rights/type byte
CH = 80386 extended access rights/type byte (32-bit DPMI

implementations only)
Returns

If function was successful:
Carry flag is clear.
If function was not successful:
Carry flag is set.

Programmer's Notes
o This function will fail if the selector specified in BX is invalid.
o Your program should only modify descriptors that were allocated

through the Allocate LDT Descriptors function.
o To examine the access rights of a descriptor you should use the

instruction lar (load access rights) which is supported on 80286 and
80386 machines.

o The access rights/type byte passed in CL has the following format:

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 33

DPL C/D E/C W/R
I— 0 = > Not Accessed

1 = > Accessed
Data: 0 = > Read, 1 = > R/W
Code: Must be 1 (readable)1— Data: 0= >Exp-up, 1 = >Exp-dn

Code: Must be 0 (non-conform)
0=>Data, 1 = >Code

'— Must be 1

- Must equal caller's CPL

0= > Absent, 1 = > Present

A parameter which does not meet the above requirements is invalid,
and causes the function to return with the carry flag set.

16-bit DPMI implementations will ignore the extended access
rights/type byte passed in CH even if it is running on an 80386
system. 32-bit DPMI implementations interpret the CH parameter asfollows:

B/D A v l
i 1 rReservedt t

Can be 0 or 1
Must be 0

Ignored

0=> Default 16-bit, 1 = > Default 32-bit•— 0= >Byte Granular, 1 = >Page Granular

A parameter which does not meet the above requirements is invalid,
and causes the function to return with the carry flag set.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 34

8.10 Create Code Segment Alias Descriptor

This function will create a data descriptor that has the same base and limit
as the specified code segment descriptor.

To Call
AX = 0O0Ah
BX = Code segment selector

Returns

If function was successful:
Carry flag is clear.
AX = New data selector

If function was not successful:
Carry flag is set.

Programmer's Notes
o This function will fail if the selector specified in BX is not a code

s e g m e n t o r i s i n v a l i d . •
o Use the Free LDT Descriptor function to deallocate the alias

d e s c r i p t o r . m i '■ •■ . . A 4 U
o The code segment alias descriptor will not track changes to the

code descriptor. In other words, if an alias descriptor is created,
and then the base or limit of the code segment is changed, the alias
descriptor's base or limit would not change.

Anrii 93 loon DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 35

8.11 Get Descriptor

This function copies the descriptor table entry for a specified descriptor
into an eight byte buffer.

To Call

AX = 000Bh
BX = Selector
ES:(E)DI = Pointer to an 8 byte buffer to receive copy of descriptor

Returns

If function was successful:
Carry flag is clear.
ES:(E)DI = Pointer to buffer that contains descriptor
If function was not successful:
Garry flag is set.

Programmer's Notes
o This function will fail if the selector specified in BX is invalid or

unallocated.
o 32-bit programs must use ES:EDI to point to, the buffer. 16-bit

programs should use ES:DI.

April 23.1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 36

8.12 Set Descriptor

This function copies an eight byte buffer into the LDT entry for a specified
descriptor.

To Call

AX = 000Ch
BX = S6l6Ctor
ES:(E)DI = Pointer to an 8 byte buffer that contains descriptor

Returns

If function was successful:
Carry flag is clear.
If function was not successful:
Carry flag is set.

Programmer's Notes
o This function will fail if the selector specified in BX is invalid.
o Your program should only modify descriptors that were allocated

through the Allocate LDT Descriptors function.
o 32-bit programs must use ES:EDI to point to the buffer. 16-bit

programs should use ES:DI.
o The type byte (byte 5) follows the same format and restrictions as

the access rights/type parameter (in CL) to Set Descriptor Access
Rights. The extended type byte (byte 6) follows the same format
and restrictions as the extended access rights/type parameter (in
CH) to Set Descriptor Access Rights, except the limit field may have
any value, except the low order 4 bits (marked "reserved") are used
to set the upper 4 bits of the descriptor's limit.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 37

8.13 Allocate Specific LDT Descriptor

This function attempts to allocate a specific LDT descriptor.To Call

AX = 000Dh
BX = Selector

Returns

If function was successful:
Carry flag is clear.
Descriptor has been allocated
If function was not successful:
Carry flag is set.

Programmer's Notes
o This function will fail if the selector specified in BX is in use or is not

an LDT selector.
o Use function 0001 h to free the descriptor.
o The first 10h (16 decimal) descriptors must be reserved for this

function and may not be used by the host.
o If another application has already loaded then some of these

descriptors may be in use.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 38

9. DOS MEMORY MANAGEMENT SERVICES

Some applications require the ability to allocate memory in the real mode
addressable 1 megabyte region. These services allow protected mode
applications to allocate and free memory that is directly addressable by real mode
software such as networks and DOS device drivers. Often, this memory is used in
conjunction with the API translation services to call real mode software that is not
directly supported by DPMI.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 39

9.1 Allocate DOS Memory Block

This function will allocate a block of memory from the DOS free memory
pool. It returns both the real mode segment and one or more descriptors
that can be used by protected mode applications to access the block.

To Call

AX = 0100h
BX = Number of paragraphs (16 byte blocks) desired

Returns

If function was successful:
Carry flag is clear.
AX = Initial real mode segment of allocated block
DX = Selector for allocated block

If function was not successful:
Carry flag is set.
AX = DOS error code:

07h memory control blocks damaged
08h insufficient memory available to allocate as requested

BX = Size of largest available block in paragraphs

Programmer's Notes

o If the size of the block requested is greater than 64K bytes (BX >
1000h) then contiguous descriptors will be allocated. To access the
next descriptor for the memory block add the value return by
function 0003h (see page 28) to the base selector. If more than one
descriptor is allocated under 32-bit DPMI implementations, the limit
of the first descriptor will be set to the size of the entire block. All
subsequent descriptors will have a limit of 64K except for the final
descriptor which will have a limit of Block size MOD 64K. 16-bit
DPMI implementations will always set the limit of the first descriptor
to 64K even when running on an 80386.

o Your program should never modify or deallocate any descriptors
allocated by this function. The Free DOS Memory Block function will
deallocate the descriptors automatically

AnriISS 10QO DOR PRr»TF<rn=n MORF INTFRFACF. SPECIFICATION 0.9 Paae40

9.2 Free DOS Memory Block

This function frees memory that was allocated through the Allocate DOS
Memory Block function.

To Call

AX = 0101h
DX = Selector of block to free

Returns

If function was successful:
Carry flag is clear.
If function was not successful:
Carry flag is set.
AX = DOS error code:

07h memory control blocks damaged
09h incorrect memory segment specified

Programmer's Notes
All descriptors allocated for the memory block are automatically
freed and therefore should not be accessed once the block is freed
by this function.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 41

9.3 Resize DOS Memory Block

This function is used to grow or shrink a memory block that was allocated
through the Allocate DOS Memory Block function.

To Call

AX = 0102h
BX = New block size in paragraphs
DX = Selector of block to modify

Returns

If function was successful:
Carry flag is clear.
If function was not successful:
Carry flag is set.
AX = DOS error code:

07h memory control blocks damaged
08h insufficient memory available to allocate as requested
09h incorrect memory segment specified

BX = Maximum block size possible in paragraphs

Programmer's Notes
o Growing a memory block is often likely to fail since other DOS block

allocations will prevent increasing the size of the block. Also, if the
size of a block grows past a 64K boundary then the allocation will
fail if the next descriptor in the LDT is not free. Therefore, this
function is usually only used to shrink a block.

o Shrinking a block may cause some descriptors that were previously
allocated to the block to be freed. For example shrinking a block
from 140K to 120K would cause the third allocated descriptor to be
freed since it is no longer valid. The initial selector will remain
unchanged, however, the limits of the remaining two descriptors will
change: the first to 120K and the second to 56k.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 42

10. INTERRUPT SERVICES

These services allow protected mode applications to intercept real and protected
mode interrupts and hook processor exceptions.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 43

^ ^ ^ ^ ^ H i ^ ^ P i a m i p l Ve c t o r
This function returns the value of the current task's real mode interrupt
vector for the specified interrupt.

To Call

AX = 0200h
BL = Interrupt number

Returns

Carry flag is clear.
CX:DX = Seament:Offset of real mode interrupt handler

Programmer's Notes

o The address returned in CX is a segment, not a selector. Therefore
you should not attempt to place the value returned in CX into a
segment register in protected mode or a general protection fault
may occur.

o Note all 100h (256 decimal) interrupt vectors must be supported by
the DPMI host.

April 23.1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Paae 44

10.2 Set Real Mode Interrupt Vector

This function sets the value of the current task's real mode interrupt vector
for the specified interrupt.

To Call

AX = 0201h
BL = Interrupt number
CX:DX = SeamentOffset of real mode interrupt handler

Returns

If function was successful:
Carry flag is clear.
If function was not successful:
Carry flag is set.

Programmer's Notes
The address passed in CX must be a real mode segment, not a
SGlGCtOr
if the interrupt being hooked is a hardware interrupt then you must
lock the segment that the interrupt handler runs in as well as any
memory the handler may touch at interrupt time.
The address contained in CX:DX must be a real mode
segment:offset, not a selectonoffset. This means that the code for
the interrupt handler must either reside in DOS addressable memory
or you must use a real mode call-back address. Refer to the section
on DOS memory management services on page 39 for information
on allocating memory below 1 megabyte. Information on real mode
call back addresses can be found on page 58.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 45

10.3 Get Processor Exception Handler Vector

This function returns the CS:(E)IP of the current protected mode exception
handler for the specified exception number.

To Call

AX = 0202h
BL = Exception/fault number (00h-1Fh)

Returns

If function was successful:
Carry flag is clear.
CX:(E)DX = SelectoriOffset of exception handler
If function was not successful:
Carry flag is set.
The value passed in BL was invalid.

Programmer's Notes
o The value returned in CX is a valid protected mode selector, not a

real mode segment.
o 32-bit mode programs will be returned a 32-bit offset in the EDX

register.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 46

10.4 Set Processor Exception Handler Vector

This function allows protected mode applications to intercept processor
exceptions that are not handled by the DPMI environment. Programs may
wish to handle exceptions such as not present segment faults which would
otherwise generate a fatal error.

Every exception is first examined by the protected mode operating system.
If it can not handle the exception it then reflects it through the protected
mode exception handler chain. The final handler in the chain may either
reflect the exception as an interrupt (as would happen in real mode) or it
may terminate the current program.

To Call

AX = 0203h
BL = Exception/fault number (00h-1Fh)
CX:(E)DX = SelectonOffset of exception handler

Returns

If function was successful:
Carry flag is clear.
If function was not successful:
Carry flag is set.
The value passed in BL was invalid.

Programmer's Notes
o The value passed in CX must be a valid protected mode code

selector, not a real mode segment.
o 32-bit mode programs must supply a 32-bit offset in the EDX

register. If your handler chains to the next exception handler it must
do so using a 32-bit interrupt stack frame.

o The handler should return using a far return instruction. The original
SS:(E)SP, CS:(E)IP and flags on the stack, including the interrupt
flag, will be restored.

o All fault stack frames have an error code. However, the error code
is only valid for exceptions 08h, OAh, OBh, OCh, ODh, and OEh.

o The handler must preserve and restore all registers.
o The exception handler will be called on a locked stack with

interrupts disabled. The original SS, (E)SP, CS, and (E)IP will be
pushed on the exception handler stack frame.

o The handler must either return from the call by executing a far return
or jump to the next handler in the chain (which will execute a far
return or chain to the next handler).

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 47

The procedure can modify any of the values on the stack pertaining
to the exception before returning. This can be used, for example, to
jump to a procedure by modifying the CS:IP on the stack. Note that
the procedure must not modify the far return address on the stack ~
it must return to the original caller. The caller will then restore the
flags, CS:(E)IP and SS:(E)SP from the stack frame.If the DPMI client does not handle an exception, or jumps to the
default exception handler, the host will reflect the exception as an
interrupt for exceptions 0,1, 2, 3,4, 5, and 7. Exceptions 6, and 8-1 Fh will be treated as fatal errors and the client will be terminated.
Exception handlers will only be called for exceptions that occur in
protected mode.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 48

Call-Back Stack Frames
Stack frame for 16-bit programs:

1 5 0

SS

SP

Flags
CS

IP

Err Code

Return CS

Return IP
<— SS:SP

Stack frame for 32-bit programs:

3 1 0
SS

ESP

EFIags
CS

EIP

Error Code

: RetCS

Return EIP
<~ SS:ESP

Shaded fields should not be modified. Other fields can be modified before
returning from the exception handler.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 49

103 Get Protected Mode Interrupt Vector

This function returns the CS:(E)IP of the current protected mode interrupt
handler for the specified interrupt number.

To Call

AX = 0204h
BL = Interrupt number

Returns

Carry flag is clear.
CX:(E)DX = SelectonOffset of exception handler

Programmer's Notes
o The value returned in CX is a valid protected mode selector, not a

real mode segment.
o 32-bit mode programs will be returned a 32-bit offset in the EDX

register.
o All 100h (256 decimal) interrupt vectors must be supported by the

DPMI host.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Paqe 50

10.6 Set Protected Mode Interrupt Vector

This function sets the address of the specified protected mode interrupt
vector.

To Call

AX = 0205h
B L = I n t e r r u p t n u m b e r .
CX:(E)DX = SelectonOffset of exception handler

Returns

If function was successful:
Carry flag is clear.
If function was not successful:
Carry flag is set.

Programmer's Notes
The value passed in CX must be a valid protected mode code
selector, not a real mode segment.
32-bit mode programs must supply a 32-bit offset in the EDX
register. If your handler chains to the next exception handler it must
do so usinq a 32-bit interrupt stack frame.
Note all 100h (256 decimal) interrupt vectors must be supported by
the DPMI host.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 51

11. TRANSLATION SERVICES

These services are provided so that protected mode programs can call real mode
software that DPMI does not support directly. The protected mode program sets
up a data structure that contains the values for every register. The data structureis defined as:

Offset Register
00h EDI

04h ESI

08h EBP

OCh Reserved by system

10h EBX

14h EDX

18h ECX

1Ch EAX

20h F l a g s ^ ^ ^ ^ H
22h E S ^ ^ ^ |

24h D S ^ ^ ^ |

26h F S ^ ^ ^ |

28h G S H ^ ^ l
2Ah I P ^ ^ ^ H
2Ch C S ^ ^ ^ |

2Eh S P ^ ^ ^ |

30h S S ^ ^ ^ |

You will notice that all of the fields are dwords so that 32 bit registers can be
passed to real mode. Most real mode software will ignore the high word of theextended registers. However, you can write a real mode procedure that uses 32-
bit registers if you desire. Note that 16-bit DPMI implementations may not pass
the high word of 32-bit registers or the FS and GS segment registers to real mode
even when running on an 80386 machine.

Anril 23.1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 52

Any interrupt handler or procedure called must return with the stack in the same
state as when it was called. This means that the real mode code may switch
stacks while it is running but it must return on the same stack that it was called on
and it must pop off the entire far return/iret structure.

After the call or interrupt is complete, all real mode registers and flags except SS,
SP, CS, and IP will be copied back to the real mode call structure so that the caller
can examine the real mode return values.

Remember that the values in the segment registers should be real mode
segments, not protected mode selectors.
The translation services will provide a real mode stack if the SS:SP fields are zero.
However, the stack provided is relatively small. If the real mode
procedure/interrupt routine uses more than 30 words of stack space then you
should provide your own real mode stack.

It is possible to pass parameters to real mode software on the stack. The
following code will call a real mode procedure with 3 word parameters:

Protected Mode Code:
push Paraml
push Param2
push Param3
(Set ES:DI to point to call structure)
mov e x , 3 ; C o p y 3 w o r d s
mov a x , 0 3 0 1 h ; C a l l r e a l m o d e p r o c
i n t 3 l h ; C a l l t h e p r o c e d u r e
add s p , 6 ; C l e a n u p s t a c k

The real mode procedure would be called with the following data on the real
mode stack:

Paraml

Param2

Param3

Return CS

Return IP
<-Real mode SS:SP

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 53

If your program needs to perform a series of calls to a real mode API it is
sometimes more convenient to use the translation services to call a real mode
procedure in your own program. That procedure can then issue the API calls in
real mode and then return to protected mode. This also avoids the overhead of a
mode switch for each API call.

There is also a mechanism for protected mode software to gain control from real
mode via a real mode call-back address. Real mode call-backs can be used to
hook real mode interrupts or to be called in protected mode by a real mode
driver. For example, many mouse drivers will call a specified address whenever
the mouse is moved. This service allows the call-back to be handled by software
running in protected mode.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 54

11.1 Simulate Real Mode Interrupt

This function simulates an interrupt in real mode. It will invoke the CS:IP
specified by the real mode interrupt vector and the handler must return by
executing an iret.

To Call

AX = 0300h
BL = Interrupt number
BH = Flags

Bit 0 = 1 resets the interrupt controller and A20 line
Other flags reserved and must be 0

CX = Number of words to copy from protected mode to real mode stack
ES:(E)DI = SelectonOffset of real mode call structure

Returns

If function was successful:
Carry flag is clear.
ES:(E)DI = SelectonOffset of modified real mode call structure
If function was not successful:
Carry flag is set.

Programmer's Notes
o The CS:IP in the real mode call structure is ignored by this service.

The appropriate interrupt handler will be called based on the value
passed in BL

o If the SS:SP fields are zero then a real mode stack will be provided
by the DPMI host. Otherwise, the real mode SS:SP will be set to the
specified values before the interrupt handler is called.

o The flags specified in the real mode call structure will be pushed on
the real mode stack iret frame. The interrupt handler will be called
with the interrupt and trace flags clear.

o When the Int 31 h returns, the real mode call register structure will
contain the values that were returned by the real mode interrupt
handler.

o It is up to the caller to remove any parameters that were pushed on
the protected mode stack.

o 32-bit programs must use ES:EDI to point to the real mode call
structure. 16-bit programs should use ES:DI.

o The flag to reset the interrupt controller and A20 line is ignored by
DPMI implementations that run in Virtual 8086 mode. It causes
DPMI implementations that return to real mode to set the interrupt
controller and A20 address line hardware to its normal real mode
state.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 55

11.2 Call Real Mode Procedure With Far Return Frame

This function calls a real mode procedure. The called procedure must
execute a far return when it completes.

To Call

AX = 0301h
BH = Flags

Bit 0 = 1 resets the interrupt controller and A20 line
Other flags reserved and must be 0

CX * Number of words to copy from protected mode to real mode stack
ES:(E)DI = SelectonOffset of real mode call structure

Returns

If function was successful:
Carry flag is clear.
ES:(E)DI = SelectonOffset of modified real mode call structure
If function was not successful:
Carry flag is set.

Programmer's Notes
o The CS:IP in the real mode call structure specifies the address of

the real mode procedure to call.
o The real mode procedure must execute a far return when it has

completed.o If the SS:SP fields are zero then a real mode stack will be provided
by the DPMI host. Otherwise, the real mode SS:SP will be set to the
specified values before the procedure is called.

o When the Int 31 h returns, the real mode call structure will contain
the values that were returned by the real mode procedure.

o It is up to the caller to remove any parameters that were pushed on
the protected mode stack.

o 32-bit programs must use ES:EDI to point to the real mode call
structure. 16-bit programs should use ES:DI.

o The flag to reset the interrupt controller and A20 line is ignored by
DPMI implementations that run in Virtual 8086 mode. It causes
DPMI implementations that return to real mode to set the interrupt
controller and A20 address line hardware to its normal real mode
state.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 56

11.3 Call Real Mode Procedure With Iret Frame

This function calls a real mode procedure. The called procedure must
execute an iret when it completes.

To Call

AX = 0302h
BH = Rags

Bit 0 = 1 resets the interrupt controller and A20 line
Other flags reserved and must be 0

CX = Number of words to copy from protected mode to real mode stack
ES:(E)DI = SelectonOffset of real mode call structure

Returns

If function was successful:
Carry flag is clear.
ES:(E)DI = SelectonOffset of modified real mode call structure
If function was not successful:
Carry flag is set.

Programmer's Notes
o The CS:IP in the real mode call structure specifies the address of

the real mode procedure to call.
o The real mode procedure must execute an iret when it has

c o m p l e t e d . L
o If the SS:SP fields are zero then a real mode stack will be provided

by the DPMI host. Otherwise, the real mode SS:SP will be set to the
specified values before the procedure is called.

o When the Int 31 h returns, the real mode call structure will contain
the values that were returned by the real mode procedure.

o The flags specified in the real mode call structure will be pushed the
real mode stack iret frame. The procedure will be called with the
interrupt and trace flags clear.

o It is up to the caller to remove any parameters that were pushed on
the protected mode stack.

o 32-bit programs must use ES:EDI to point to the real mode call
structure. 16-bit programs should use ES:DL

o The flag to reset the interrupt controller and A20 line is ignored by
DPMI implementations that run in Virtual 8086 mode. It causes
DPMI implementations that return to real mode to set the interrupt
controller and A20 address line hardware to its normal real mode
state.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 57

11.4 Allocate Real Mode Call-Back Address

This service is used to obtain a unique real mode SEG:OFFSET that will
transfer control from real mode to a protected mode procedure.

At times it is necessary to hook a real mode interrupt or device call-back in
a protected mode driver. For example, many mouse drivers call an
address whenever the mouse is moved. Software running in protected
mode can use a real mode call-back to intercept the mouse driver calls.

To Call

AX = 0303h
DS:(E)SI = SelectonOffset of procedure to call
ES:(E)DI = SelectonOffset of real mode call structure

Returns

If function was successful:
Carry flag is clear.
CX:DX = SegmentOffset of real mode call address

If function was not successful:
Carry flag is set.

Call-Back Procedure Parameters

Interrupts disabled
DS:(E)SI = SelectonOffset of real mode SS:SP
ES:(E)DI = SelectonOffset of real mode call structure
SS:(E)SP = Locked protected mode API stackAll other registers undefined

Return from Call-Back Procedure

Execute an IRET to return
ES:(E)DI = SelectonOffset of real mode call structure to restore (see note)

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 58

Programmer's Notes
Since the real mode call structure is static, you must be careful
when writing code that may be reentered. The simplest method of
avoiding reentrancy is to leave interrupts disabled throughout the
entire call. However, if the amount of code executed by the call
back is large then you will need to copy the real mode call structure
into another buffer. You can then return with ES:(E)DI pointing to
the buffer you copied the data to - it does not have to point to the
original real mode call structure.
The called procedure is responsible for modifying the real mode
CS:IP before returning. If the real mode CS:IP is left unchanged
then the real mode call-back will be executed immediately and your
procedure will be called again. Normally you will want to pop a
return address off of the real mode stack and place it in the real
mode CS:IP. The example code in the next section demonstrates
chaining to another interrupt handler and simulating a real mode
iret.
To return values to the real mode caller you must modify the real
mode call structure.
Remember that all segment values in the real mode call structure will
contain real mode segments, not selectors. If you need to examine
data pointed to by a real mode seg:offset pointer you should not
use the segment to selector service to create.a new selector.
Instead, allocate a descriptor during initialization and change the
descriptor's base to 16 times the real mode segment's value. This is
important since selectors allocated though the segment to selector
service can never be freed.
DPMI hosts should provide a minimum of 16 call-back addresses
per task.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 59

Example Code
The following code is a sample of a real mode interrupt hook. It hooks the
DOS Int 21 h and returns an error for the delete file function (AH=41h).
Other calls are passed through to DOS. This example is somewhat silly but
it demonstrates the techniques used to hook a real mode interrupt. Note
that since DOS calls are reflected from protected mode to real mode, the
following code will intercept all DOS calls from both real mode and
protected mode.
* *
; This procedure gets the current Int 21h real mode
; Seg:Offset, allocates a real mode call-back address,
; and sets the real mode Int 21h vector to the call-
; back address.
; *
I n i t i a l i z a t i o n C o d e :

C r e a t e a c o d e s e g m e n t a l i a s t o s a v e d a t a i n

mov axf OOOAh
mov b x , c s
i n t 31h
j c ERROR
mov d s , a x
ASSUMES DS,_TEXT

Get cur ren t In t 21h rea l mode SEG:OFFSET

m o v a x , 0 2 0 O h
m o v b l , 2 1 h
i n t 3 1 h
j c E R R O R
m o v [O r i g _ R e a l _ S e g] , e x
m o v [O r i g _ _ R e a l _ O f f s e t] , d x

A l l o c a t e a r e a l m o d e c a l l - b a c k

mov
p u s h
mov
mov
mov
p o p
mov
i n t
j c

ax, 0303h
ds
bx, cs
ds, bx
s i ,
es
di, OFFSET My_Real_Mode_Call_Struc
31h
ERROR

OFFSET My_Int_21_Hook

Hook real mode int 21h with the call-back address

m o v a x , 0 2 0 1 h
m o v b l , 2 1 h
i n t 3 1 h
j c E R R O R

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 60

* *

This is the actual Int 21h hook code. It wil l return
an "access denied" error for all calls made in real
mode to delete a file. Other calls will be passed
through to DOS.
ENTRY:

DS:SI -> Real mode SS:SP
ES:DI -> Real mode call structure
Inter rupts d isabled

EXIT:
ES:DI -> Real mode call structure

* *

My_Int_2l_Hook:
cmp
j n e

es:[di.RealMode_AH], 41h
Chain To DOS

This is a delete file call (AH=41h). Simulate an
iret on the real mode stack, set the real mode
carry flag, and set the real mode AX to 5 to indicate
an access denied error.

e l d
l o d s w # G e t r e a l m o d e r e t I P
m o v e s : [d i . R e a l M o d e _ I P] , a x
l o d s w ; G e t r e a l m o d e r e t C S
mov es : [d i .Rea lMode_CS] , ax
l o d s w # G e t r e a l m o d e fl a g s
o r a x , 1 ; S e t c a r r y fl a g
m o v e s : [d i . R e a l M o d e _ F l a g s] , a x
a d d e s : [d i . R e a l M o d e _ S P] , 6
mov es : [d i .Rea lMode_AX] , 5
j m p M y _ H o o k _ E x i t

Chain to original Int 21h vector by replacing the
real mode CS:IP with the original Seg:Offset.

Chain_To_DOS:mov
mov
mov
mov

My_Hook_Exit:i r e t

ax, cs:[Orig_Real_Seg]
es:[di.RealMode_CS], ax
ax, cs:[Orig_Real_Offset]
es:[di.RealMode_IP], ax

Aoril 23.1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 61

11,5 Free Real Mode Call-Back Address

This function frees a real mode call-back address that was allocated
through the allocate real mode call-back address service.

To Call

AX = 0304h
CX:DX = Real mode call-back address to free

Returns

If function was successful:
Carry flag is clear.
If function was not successful:
Carry flag is set.

Programmer's Notes
o Real mode call-backs are a limited resource. Your code should free

any break point that it is no longer using.

ADril 23.1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 62

11.6 Get State Save/Restore Addresses

When a program uses the raw mode switch services (see page 65) or
issues DOS calls from a hardware interrupt handler, it will need to save the
state of the current task before changing modes. This service returns the
addresses of two procedures used to save the state of the current task's
registers. For example, the real mode address is used to save the state of
the protected mode registers. The protected mode address is used to
save the state of the real mode registers. This can be used to save the
state of the alternate mode's registers before they are modified by the
mode switch call. The current mode's registers can be saved by simply
pushing them on the stack.
Note: It is not necessary to call this service if using the translation services
0300h, 0301 h or 0302h. It is provided for programs that use the raw mode
switch service.

To Call

AX = 0305h

Returns

If function was successful:
Carry flag is clear
AX = Size of buffer in bytes required to save state
BX:CX = Real mode address used to save/restore state
SI:(E)DI = Protected mode address used to save/restore state
If function was not successful:
Carry flag is set

Parameters To State-Save Procedures

Execute a far call to the appropriate address (real or pmode) with:
ES:(E)DI = Pointer to state-save bufferAL = 0 to save state
AL = 1 to restore state

Programmer's Notes
o Some implementations of DPMI will not require the state to be

saved. In this case, the buffer size returned will be zero. However,
it is still valid to call the addresses returned, although they will just
return without performing any useful function.

o The save/restore functions will not modify any registers.
o The address returned in BX:CX must only be called in real mode.

The address returned in SI:(E)DI must only be called in protected
mode.

o 16-bit programs should call the address returned in SI:DI to save the
real mode state. 32-bit programs should call the address returned
in SI:EDI.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 63

Example Code
The following code is a sample protected mode timer interrupt handler that
saves the state of the real mode registers, issues DOS calls, and restores
the state. This code assumes that the Int 31 h function 0305h has been
executed and that the call address and buffer size have been saved in local
variables.

Sample_Timer_Code:
p u s h f
ca l l FAR PTR cs : [Nex t_Timer_Hand le r]
s t i

; Save pro tec ted mode reg is ters

push
push
pusha

ds
es

; Save rea l mode reg is ters

mov ds, cs:[My__Local_.DS]
mov ax, SS
mov
sub
mov
x o r
c a l l

es ,
sp,
d i ,
a l ,
[PM

ax
[State_Save_Size]
sp
a l
Save Restore_Stat

Raw mode switch here

Restore rea l mode reg is ters

m o v a x , s s
m o v e s , a x
m o v d i , s p
m o v a l , 1
c a l l [P M _ S a v e _ R e s t o r e _ S t a t e]
a d d s p , [S t a t e _ S a v e _ S i z e]

Restore protected mode regis ters and return

popa
pop
pop

es
ds

i r e t

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 64

11.7 Get Raw Mode Switch Addresses

This function returns addresses that can be jumped to for low-level mode
switching.To Call

AX = 0306h

Returns

If function was successful:
Carry flag is clear
BX:CX = Real -> Protected mode switch address
SI:(E)DI = Protected -> Real mode switch address
If function was not successful:
Carry flag is set

Parameters To State-Save Procedures

Execute a far jump to the appropriate address (real or pmode) with:
AX = New DS
CX =NewES
DX = New SS
(E)BX = New (E)SPSI = New CS
(E)DI =New(E)IP
The processor will be placed in the desired mode. The DS, ES, SS, (E)SP,
CS and (E)IP will contain the values specified. The (E)BP register will be
preserved across the call and so can be used as a pointer. The vakjes in
(E)AX, (E)BX, (E)CX, (E)DX, (E)SI, and (E)DI will be undefined On an
80386 or 80486 the FS and GS segment registers will contain zero after the
mode switch.

Programmer's Notes
o The address returned in BX:CX must only be called in real mode to

switch into protected mode. The address returned in SI:(E)DI must
onlv be called in protected mode to switch into real mode.

o 16-bit programs should call the address returned in SI:DI to switch
from protected to real mode. 32-bit programs should call the
address returned in SI:EDI.

o It is up to the caller to save and restore the state of the task when
using this function to switch modes. This usually requires using the
s t a t e s a v e f u n c t i o n (s e e p a g e 6 3) . .

o The parameters must contain segment values appropriate for the
mode that is being switched to. If invalid selectors are specified
when switching into protected mode, an exception will occur.

o Applications may find functions 0300h, 0301h, 0302h, and 0304h
more convenient to use than using this type of mode switching.

Anril 23.1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 65

12. GET VERSION

Function 0400h returns the version of DPMI services supported. Note that this is
not necessarily the version of any operating system that supports DPMI. It should
be used by programs to determine what calls are legal in the current environment.

To Call
AX = 0400h

Returns

AH = Major version
AL = Minor version
BX = Flags

Bit 0 = 1 if running under an 80386 DPMI implementation
Bit 1 =1 if processor is returned to real mode for reflected
interrupts (as opposed to Virtual 8086 mode).Bit 2 = 1 if virtual memory is supported
Bit 3 is reserved and undefined
All other bits are zero and reserved for later use

CL = Processor type
02 = 80286
03 = 80386
04 = 80486

DH = Current value of virtual master PIC base interrupt
DL = Current value of virtual slave PIC base interrupt
Carry flag clear (call can not fail)

Programmer's Notes
None

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 66

13. MEMORY MANAGEMENT SERVICES

These functions are provided to allocate linear address space.

Aoril 23.1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 67

13.1 Get Free Memory Information

This function is provided so that protected mode applications can
determine how much memory is available. Under DPMI implementations
that support virtual memory, it is important to consider issues such as the
amount of available physical memory.

Note that since DPMI applications will often run in multi-tasking
environments, this function must be considered only advisory.

To Call

AX = 0500h
ES:(E)DI = SelectonOffset of 30h byte buffer

Returns

If function was successful:
Carry flag is clear.
ES:(E)DI = SelectonOffset of buffer with the following structure:

Offset Description
00h Largest available free block in bytes
04h Maximum unlocked page allocation

08h Maximum locked page allocation

OCh Linear addr space size in pages

10h Total number of unlocked pages

14h Number of free pages

18h Total number of physical pages

1Ch Free linear address space in pages

20h Size of paging file/partition in pages

24h-2Fh Reserved

If function was not successful:
Carry flag is set.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Paae 68

Programmer's Notes
o

o

o

o

o

o

o

o

o

32-b'rt programs must use ES:EDI to point to the buffer. 16-bit
urograms should use ES:DI.
DPMI implementations that do not support virtual memoryjretumed
n flags from Get Version call) will only fill in the first field. This value
specifies that largest allocation that could be made using function
0501 h. Other fields will be set to -1.
Only the first field of this structure is guaranteed to contain a validvalue. All fields that are not returned by the DPMI implementation
will be set to -1 (OFFFFFFFFh) to indicate that the information is not
available.
The field at offset OOh specifies the largest block of contiguous linear
memory in bytes that could be allocated if the memory were to be
allocated ana left unlocked.
The field at offset 04h specifies the number of pages that could be
allocated. This is the value returned by field OOh / page size.
The field at offset 08h specifies the largest block of memory in
pages that could be allocated and then locked.
The field at offset OCh specifies the size of the total linear address
space in pages. This includes all linear address space that has
already been allocated.
The field at offset 10h specifies the total number of pages that are
currently unlocked and could be paged out. This value also
contains any free pages.
The field at offset 14h specifies the number of physical pages that
currently are not in use.
The field at offset 18h specifies the total number of physical pages
that the DPMI host manages. This value includes all free, locked,
and unlocked physical pages.
The field at offset 20h specifies the size of the DPMI hosts paging
partition or file in pages.
To determine the size of pages for the DPMI host call the Get Page
Size service (see page 78).

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 69

13.2 Allocate Memory Block

This function allocates and commits linear memory.

To Call

AX = 0501h
BX:CX = Size of memory block to allocate in bytes

Returns

If function was successful:
Carry flag is clear
BX:CX = Linear address of allocated memory block
SI:DI = Memory block handle (used to resize and free)

If function was unsuccessful:
Carry flag is set

Programmer's Notes
o This function does not allocate any selectors for the memory block.

It is the responsibility of the caller to allocate and initialize any
selectors needed to access the memory.

o Under DPMI implementations that support virtual memory the
memory block will be allocated unlocked. If some or all of the
memory should be locked you will need to use either the lock
selector function or the lock linear region function.

o Under many implementations of DPMI, allocations will be page
granular. This means that an allocation of 1001 h bytes will result inan allocation of 2000h bytes. Therefore it is best to always allocate
memory in multiples of 4K.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 70

13.3 Free Memory Block

This function frees a memory block that was allocate through the allocate
memory block function.

To Call

AX = 0502h
SI:DI = Handle of memory block to free

Returns

If function was successful:
Carry flag is clear
If function was unsuccessful:
Carry flag is set

Programmer's Notes
o Your program must also free any selectors that it allocated to point

to the memory block.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 71

13.4 Resize Memory Block

This function changes the size of a memory block that was allocated
through the allocate memory block function.

To Call

AX = 0503h
BX:CX = New size of memory block to allocate in bytes
SI:DI = Handle of memory block to resize

Returns

If function was successful:
Carry flag is clearBX:CX = New linear address of memory block
SI:DI = New handle of memory block

If function was unsuccessful:
Carry flag is set

Programmer's Notes
o This function may change the linear address of the memory block

and the memory handle. Therefore, you will need to update any
selectors that point to the block after resizing it. You must use the
new handle instead of the old one.

o This function will generate an error if a memory block is resized to 0
bytes.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 72

14. PAGE LOCKING SERVICES

These services are only useful under DPMI implementations that support virtual
memory. They will be ignored by 16-bit DPMI implementations (although they will
always return with carry clear to indicate success).
Some implementations of DPMI may ignore these calls. However, if the calls are
ignored then the DPMI host will be able to handle page faults at arbitrary points
during the application's execution including interrupt and exception handler code.
Although memory ranges are specified in bytes, the actual unit of memory that will
be locked will be one or more pages. Page locks are maintained as a count.
When the count is decremented to zero, the page is unlocked and can be
swapped to disk. This means that if a region of memory is locked three times
then it must be unlocked three times before the pages will be unlocked.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 73

14.1 Lock Linear Region

This function locks a specified linear address range.

To Call

AX = 0600h
BX:CX = Starting linear address of memory to lock
SI:DI = Size of region to lock in bytes

Returns

If function was successful:
Carry flag is clear.
If function was not successful:
Carry flag is set.

Programmer's Notes
o If this function fails then none of the memory will be locked.
o If the specified region overlaps part of a page at the beginning or

end of the region, the page(s) will be locked.

A r > r i i o - a i c o n n n c o o n T C P Tc n M n n c i m t c d c a c c c o c r i c i r A n n M n o D a n e 7 d

14.2 Unlock Linear Region

This function unlocks a specified linear address range that was previously
locked using the Lock Linear Region function.

To Call

AX = 0601h
BX:CX = Starting linear address of memory to unlock
SI:DI = Size of region to unlock in bytes

Returns

If function was successful:
Carry flag is clear.
If function was not successful:
Carry flag is set.

Programmer's Notes
o If this function fails then none of the memory will be unlocked.
o An error will be returned if the memory was not previously locked or

if the specified region is invalid.
o If the specified region overlaps part of a page at the beginning or

end of the region, the page(s) will be unlocked.
o Even if the function succeeds, the memory will remain locked if the

lock count is not decremented to zero.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 75

14.3 Mark Real Mode Region as Pageable

Under some implementations of DPMI, all memory in virtual 8086 mode is
locked by default. If a protected mode program is using memory in the first
megabyte of address space, it is a good idea to use this function to turn off
automatic page locking for regions of memory that will not be touched at
interrupt time.
Do not mark memory as pageable in regions that are not owned by vour
application. For example, you should not mark all free DOS memory as
pageable since it may cause a page fault to occur while inside of DOS
(causing a crash). Also, do not mark the DPMI host data area as
pageable.
It is very important to relock any real mode memory using function 0603h
before terminating a program. Memory that remains unlocked after a
program has terminated could result in fatal page faults when othersoftware is executed in that address space.

Note that address space marked as pageable by this function can be
locked using function 0600h. This function is just an advisory service to
allow memory that does not need to be locked to be paged out. This
function just disables any automatic locking of real mode memory
performed by the DPMI host.

To Call

AX = 0602h
BX:CX = Starting linear address of memory to mark as pageable
SI:DI = Size of region to page in bytes

Returns

If function was successful:
Carry flag is clear.
If function was not successful:
Carry flag is set.

Programmer's Notes
o If this function fails then none of the memory will be unlocked.
o If the specified region overlaps part of a page at the beginning or

end of the region, the page(s) will be not be marked as pageable.
o When your program terminates it should call function 0603h to

relock the memory region.
o Unlike the lock and unlock calls, the pageability of the real mode

region is maintained as a binary state, not a count. Therefore, do
not call this function multiple times for a given linear region.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 76

14.4 Relock Real Mode Region

This function is used to relock memory regions that were marked as
pageable by the previous function.

To Call

AX = 0603h
BX:CX = Starting linear address of memory to relock
SI:DI = Size of region to page in bytes

Returns

If function was successful:
Carry flag is clear.
If function was not successful:
Carry flag is set.

Programmer's Notes
o If this function fails then none of the memory will be relocked.
o If the specified region overlaps part of a page at the beginning or

end of the region, the page(s) will be not be relocked.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 77

14.5 Get Page Size

This function returns the size of a single memory page in bytes.

To Call

AX = 0604h

Returns

If function was successful:
Carry flag is clear
BX:CX = Page size in bytes

If function was not successful:
Carry flag is set

Programmers Notes
None

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 78

15. DEMAND PAGING PERFORMANCE TUNING SERVICES

Some applications will discard memory objects or will not access objects for long
periods of time. These services can be used to improve the performance of
demand paging.

Although these functions are only relevant for DPMI implementations that support
virtual memory, other implementations will ignore these functions fit will always
return carry clear). Therefore your code can always call these functions
regardless of the environment it is running under.
Since both of these functions are simply advisory functions, the operating system
may choose to ignore them. In any case, your code should function properly
even if the functions fail.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 79

15.1 Reserved Subf unctions

Functions 0700h and 0701 h are reserved and should not be called.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 80

15.2 Mark Page as Demand Paging Candidate

This function is used to inform the operating system that a range of pages
should be placed at the head of the page out candidate list. This will force
these pages to be swapped to disk ahead of other pages even if the
memory has been accessed recently. However, all memory contents willbe preserved.

This is useful, for example, if a program knows that a given piece of data
will not be accessed for a long period of time. That data is ideal for
swapping to disk since the physical memory it now occupies can be used
for other purposes.

To Call

AX = 0702h
BX:CX = Starting linear address of pages to mark
SI:DI = Number of bytes to mark as paging candidates

Returns

If function was successful:
Carry flag is clear.
If function was not successful:
Carry flag is set.

Programmer's Notes
o This function does not force the pages to be swapped to disk

immediately.
o Partial pages will not be discarded.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 81

15.3 Discard Page Contents

This function discards the entire contents of a given linear memory range.
It is used after a memory object that occupied a given piece of memory has
been discarded.

The contents of the region will be undefined the next time the memory is
accessed. All values previously stored in this memory will be lost.

To Call

AX = 0703h
BX:CX = Starting linear address of pages to discard
SI:DI = Number of bytes to discard

Returns

If function was successful:
Carry flag is clear.
If function was not successful:
Carry flag is set.

Programmer's Notes
o Partial pages will not be discarded.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 82

16. PHYSICAL ADDRESS MAPPING

Memory mapped devices such as network adapters and displays sometimes
have memory mapped at physical addresses that lie outside of the normal 1 Mb of
memory that is addressable in real mode. Under many implementations of DPMI,
all addresses are linear addresses since they use the paging mechanism of the
80386. This service can be used by device drivers to convert a physical address
into a linear address. The linear address can then be used to access the device
memory.
Some implementations of DPMI may not support this call because it could be
used to circumvent system protection. This call should only be used by programs
that absolutely require direct access to a memory mapped device.

To Call

AX = 0800hax = uauun
BX:CX = Physical address of memory
SI:DI = Size of region to map in bytes

Returns

If function was successful:
C a r r y fl a g i s c l e a r . .
BX:CX = Linear address that can be used to access the physical memory

If function was not successful:
Carry flag is set.

Programmer's Notes
o Under DPMI implementations that do not use the 80386 paging

mechanism, the function will always succeed and the address
returned will be equal to the physical address parameter passed
into this function.

o It is up to the caller to build an appropriate selector to access the
m e m o r y . . .

o Do not use this service to access memory that is mapped in the first
megabyte of address space (the real mode addressable region).

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 83

17. VIRTUAL INTERRUPT STATE FUNCTIONS

Under many implementations of DPMI, the interrupt flag in protected mode will
always be set (interrupts enabled). This is because the program is running under
a protected operating system that can not allow programs to disable physical
hardware interrupts. However, the operating system will maintain a "virtual"
interrupt state for protected mode programs. When the program executes a cliinstruction, the program's virtual interrupt state will be disabled, and the program
will not receive any hardware interrupts until it executes an sti to reenable
interrupts (or calls service 0901 h).
When a protected mode program executes a pushf instruction, the real processor
flags will be pushed onto the stack. Thus, examining the flags pushed on thestack is not sufficient to determine the state of the program's virtual interrupt flag.
These services enable programs to get and modify the state of their virtual
interrupt flag.
The following sample code enters an interrupt critical section and then restores
the virtual interrupt state to if s previous state.

Disable interrupts and get previous interrupt state

m o v a x , 0 9 0 0 h
i n t 3 i n

At this point AX = 0900h or 0901h

Restore previous state (assumes AX unchanged)

i n t 3 1 h

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 84

17.1 Get and Disable Virtual Interrupt State

This function will disable the virtual interrupt flag and return the previous
state of the virtual interrupt flag.

To Call

AX = 0900h

Returns

Carry flag clear (this function always succeeds)
Virtual interrupts are disabled
AL = 0 if virtual interrupts were previously disabled
AL = 1 if virtual interrupts were previously enabled

Programmer's Notes
o AH will not be changed by this procedure. Therefore, to restore the

previous state, simply execute an Int 31 h.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 85

17.2 Get and Enable Virtual Interrupt State

This function will enable the virtual interrupt flag and return the previous
state of the virtual interrupt flag.

To Call

AX = 0901h

Returns

Carry flag clear (this function always succeeds)
Virtual interrupts are enabled
AL = 0 if virtual interrupts were previously disabled
AL = 1 if virtual interrupts were previously enabled

Programmer's Notes
o AH will not be changed by this procedure. Therefore, to restore the

previous state, simply execute an Int 31 h.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 86

17.3 Get Virtual Interrupt State

This function will return the current state of the virtual interrupt flag.

To Call

AX = 0902h

Returns

Carry flag clear (this function always succeeds)AL = 0 rf virtual interrupts are disabled
AL = 1 if virtual interrupts are enabled

Programmer's Notes
None

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 87

18. GET VENDOR SPECIFIC API ENTRY POINT

Some DOS extenders provide extensions to the standard set of DPMI calls. This
call is used to obtain an address which must be called to use the extensions. The
caller points DS:(E)SI to a null terminated string that specifies the vendor name or
some other unique identifier to obtain the specific extension entry point.

To Call

AX = OAOOh
DS:(E)SI = Pointer to null terminated string

Returns

If function was successful:
Carry flag is clear
ES:(E)DI = Extended API entry point
DS, FS, GS, EAX, EBX, ECX, EDX, ESI, and EBP may be modified
If function was not successful:
Carry flag is set

Programmer's Notes
o Execute a far call to call the API entry point.
o All extended API parameters are specified by the vendor.
o The string comparison used to return the API entry point Js case

sensitive.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 88

19. DEBUG REGISTER SUPPORT

The 80386 processor supports special registers that are used for debugging.
Since the instructions to modify these registers can only be executed by code
running at privileged level zero, protected mode debuggers running in DPMI
environments can not modify the registers directly. These services provide
mechanisms for setting and clearing debug watchpoints and detecting when a
watchpoint has caused a fault.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 89

19,1 Set Debug Watchpoint

This function will set a debug watchpoint at a specified linear address.

To Call

AX = 0B00h
BX:CX = Linear address of watchpoint
DL = Size of watchpoint (1,2, or 4)
DH = Type of watchpoint

0 = Execute
1 = Write
2 = Read/Write

Returns

If function was successful:
Carry flag is clearBX = Debug watchpoint handle

If function was not successful:
Carry flag is set

Programmer's Notes
None

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 90

19.2 Clear Debug Watchpoint

This function will clear a debug watchpoint that was set using the Set
Debug Watchpoint function.

To Call

AX = 0B01h
BX = Debug watchpoint handle

Returns

If function was successful:
Carry flag is clear
If function was not successful:
Carry flag is set

Programmer's Notes
o This call frees the debug watchpoint handle

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 91

19.3 Get State of Debug Watchpoint

This function returns the state of a debug watchpoint that was set using the
Set Debug Watchpoint function.

To Call

AX = 0B02h
BX = Debug Watchpoint Handle

Returns

If function was successful:
Carry flag is clearAX = Status flags

Bit 0 = 1 if watch point has been executed

If function was not successful:
Carry flag is set

Programmer's Notes
o To clear the watchpoint state the caller must use function 0B03h.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 92

19.4 Reset Debug Watchpoint

This function resets the state of a previously defined debug watchpoint.

To Call

AX = 0B03h
BX = Debug Watchpoint Handle

Returns

If function was successful:
Carry flag is clear
If function was not successful:
Carry flag is set

Programmer's Notes
None

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 93

20. OTHER APIS

In general, any software interrupt interface that passes parameters in the EAX,
EBX, ECX, EDX, ESI, EDI, and EBP registers will work as long as none of the
registers contains a segment value. In other words, if a software interrupt
interface is completely register based without any pointers, segment register, or
stack parameters, that API could work under any DPMI implementation.

More complex APIs require the caller to use the translation services described on
page 52.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 94

21. NOTES FOR DOS EXTENDERS

Many programs that use DPMI will be bound to DOS extenders so that they will be
able to run under any DOS environment. Existing DOS extenders support APIs
that differ from the Int 31 h interface. Usually, DOS extenders use an Int 21 h
multiplex for their extended APIs.

Extenders that support DPMI will need to initialize differently when they are run
under DPMI environments. They will need to enter protected mode using the
DPMI real to protected mode entry point, install their own API handlers, and then
load the DOS extended application program.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 95

21.1 Initialization of Extenders

DOS extenders should check for the presence of DPMI before attempting to
allocate memory or enter protected mode using any other API. DOS extenders
should check for APIs in the following order:

DOS Protected Mode Interface
Virtual Control Program Interface
extended Memory Specification
Int 15h memory allocation

When DPMI services are detected, extenders that provide interfaces that extend
or are different from the basic DPMI interface will switch into protected mode and
initialize any internal data structures. DPMI compatible extenders that provide no
API extensions should simply execute the protected mode application in real
mode.

^^HiMlKi iB^SWPK
DOS extenders typically use Int 21 h to implement API extensions. Under DPMI, a
DOS extender will need to install an API translation library by hooking Int 21 h via
then get and set protected mode interrupt vector functions (see page 50). The
DOS extender library then gets to see every DOS call executed by the application
program. If the API does not have any pointers then the interrupt can be reflected
to the original interrupt handler. The default handler will pass the interrupt to real
mode. Other APIs can be explicitly mapped by the DOS extender.

WARNING: The translation library code should be in locked memory to prevent
page faults while DOS is in a critical section. This could happen, for instance, if a
program called DOS reentrantly from an Int 24h (critical error).

21.3 Loading the Application Program

Once the API translation library has been initialized, the DOS extender can load
the application program using standard DOS calls. Memory should be allocated
using the DPMI memory allocation services.

ADril 23.1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 96

21.4 Providing API Extensions

DPMI call OAOOh provides a standard mechanism for providing vendor specific
extensions to the standard APIs. To support extensions under a DPMI
environment, the translation library should hook the Int 31 h chain (using the DOS
get/set vector calls) and watch for call OAOOh. When this call is issued wrth the
proper string parameter, the Int 31h hook code should modify ES:(E)DI clear the
carrv flag on the stack, and iret without passing the call down the Int 31 h chain If
the string passed in ES:(E)DI does not match the extensions supported by the
library then the call should be passed down the Int 31 h chain.

April 23,1990 DOS PROTECTED MODE INTERFACE SPECIFICATION 0.9 Page 97

