
INTCRNAL CORRCSP0N0CNCC

T a U S T D a t e 1 / 2 0 / 8 6
FfcOJ* JoMttaMlUrtt'177026, SC4-59
SUBJECT: 80386 Architecture Chance- Virtual I/O Bit Map
LOT:

Summary
This memo ammends the previous virtual I/O definition by incorporating the bitmap into Pro
tected Mode I/O as well as Virtual 86 mode I/O. The changes outlined in this memo change
only the handling of I/O instructions. In particular, the PUSHF. POPF, IRET, INT n. CLI, and
STI instructions are unchanged from the REV 1.8 EAS
The flags instructions were investigated for possible virtualization of the IF (interrupt enable
flag) in protected mode, as was done in Virtual 86 mode. This investigation led to the conclu
sion that it was not possible to extend IF "virtualization' to protected mode, due primarily to
the problems with the POPF and IRET instructions.
The changes in this memo are intended to better support execution of existing "dirty* PC pro
grams m Virtual 86 mode, and also to pass along the most critical parts of the added support to
286 and 386 protected applications to allow the OS to provide direct access to selected I/O dev
ices to protected mode applications.
The Virtual 86 mode support provides selected access to I/O ports to programs executing in
Virtual 86 mode, and also provides either direct access to the DF (Interrupt Disable Flag), or
provides: full virtualization of the IF flag. Direct access to IF is provided to programs execut
ing in Virtual 86 mode if IOPL-3. All other values for IOPL provide full virtualization of DF
by trapping all instructions that load or store IF in Virtual 86 mode. If an application is
granted direct access to IF, a prudent system design would include a watchdog timer wired to
NMI to regain control from an application that left interrupts disabled for loneer than a
specified time.
The protected mode support involves only the restricted access to I/O ports, but makes no
changes to the instructions which load or store IF in Protected mode. This allows the OS to
provide selective access to I/O ports to an application, but does not allow this along with direct
access to IF. Because the 286 did not trap on POPF or IRET if CPL > IOPL it is not possible to
vinuahze IF m protected mode. Instead. IF control can be supported through direct OS calls,

o r b y t r a p s o n O J a n d S T I i n s t r u c t i o n s . ^

1. I/O Instructions
Access to I/O devices is provided by special instructions which provide for single transfers
mrough the EAX register, or for a string transfer to/from memory. These instructions will
trap if an attempt is made to access an I/O port address that is not accessible to the processor at
SCdiCU/^D- p"vUe*e lcvcL Two mechanisms provide protection to the I/O address space: theUPL field in the flags word, and a I/O permission bitmap in a 386 format TSS. These mechan-

r'ScA / °£rate " Prottct*d mode "* Virtu*l 86 mode, they do not operate in REAL mode,in REAL mode, there is no protection of the I/O space, and any I/O port can be addressed by
tne I/O instructions.

Intel Proprietary Information pcjs.org

The IOPL field defines the minimum privilege level required for access to the I/O instructions
in Protected mode. It has no effect on access to the I/O instructions in Virtual 86 mode In
Protected mode, an I/O instruction can access any I/O address if CPL <- IOPL, that is, if the
current privilege level is the same, or more privileged than the level given in the IOPL field.
The386 format TSS contains an I/O Permission bitmap, which is referenced in protected mode
if CPL > IOPL, and is always referenced in Virtual 86 mode. The I/O Permission bitmap is
contained within the 386 TSS segment, at an offset specified by a 16-bit offset field named BU-
MapBase in the TaskAltribute field in the 386 format TSS.
A program executing in Protected mode with a 286 format TSS will use only the IOPL check
to determine if an I/O access is allowed, since there is no I/O Permission bitmap in the 286
format TSS! A program executing in Protected mode with a 386 format TSS will first use the
OPL test, and if it fails, will then reference the I/O Permission bitmap to see if access to the
I/O port address is permitted. A program executing in Virtual 86 mode will bypass the IOPL
check, and will only check the I/O Permission Bitmap to determine if access to theriven I/O
p o r t i s p e r m i t t e d . 6

1.1. I/O Permission Bit Map
The I/O Permission bit map can be viewed as a 0-64KBit bit string, which starts in memory at
offset BuMapBase in the current TSS. The pointer BitMapBase is found in the upper 16 bits
of the previously defined TaskAttribute. double word field in the TSS. Each bit in the bit
string corresponds to a single byte-wide I/O port (i.e. the bit for port 40 can be found at
address 5. bit offset 0).

Since every port must be protected from multi-byte transfers below it, the enabling bit for
every byte-wide port being used in a transaction must be valid for the transaction to be
allowed. The algorithm accounts for any possible length and alignment combination.
Due to the use of a pointer to the base of the bit map. the bit map can be located anywhere in

T I x)\m&y lgn°red ^P^y (regressing to the original IOPL trap case) by pointinghe BitMapBase pointer off the end of the TSS Segment. In the same manner, only a small por
tion of the 64K I/O space need have an associated map bit, by limiting the size of the TSS (For
example, setting the TSS Limit to [BitMapBase + 32} will allow bit mapping the first 256
I/O Ports, while causing traps on any port greater than UQ55X This eliminates the commit
ment of 8K of memory when its not required, while allowing the fully general case if
desired. If all the referenced bits are zero, the I/O will be allowed, if ani are one the I/O
operation will cause a General Protection violation, with an error code of 0. Since the algo
rithm always reads a word of bit map information, there must always be a bvte containing
all ones after the last bit map byte which contains valid mapping information "but before the
tss limit.

Intcl Proprietary Information pcjs.org

The algorithm, examples, and a diagram describing the I/O bitmap function are shown below:

Algorithm:
if RealMode then Return:
if (ProtectedMode AND VM-0 AND CPL <- IOPL) then Return:
else begin (• Virtual 86 mode, or Protected mode with CPL > IOPL *)
if (TSS286) then GPFault(0);
Ptr :- (Read2(TSS+66)):
BitStringAddr .- (PortNumber SHR 3) + Ptn
MaskShift ?- (PortNumber AND 7);
nBitMask :- if (wl-BYTE) then 1

else if (wl-WORD) then 3
else if (wl-DWORD) then 15:

mask ."- (nBitMask SHL MaskShift):
CheckString :- (Read2(BitStringAddr) AND mask>,
if (CheckString-O) then RETURN
else GPFault(O)

end:
The first tests determine the current execution mode of the processor, and take action
appropriately. REAL mode simply returns to execute the I/O instruction. Protected mode
checks IOPL first, and returns if the IOPL test passes. Virtual 86 mode (VM-l). bypasses the
IOPL check to always check the bitmap.
Next, the type of TSS is checked. Since 286 format TSS's have no I/O Permission Bitmap if
the current TSS has the 286 format, a GP fault is reported to be compatible with the 286 han
dling of I/O instructions if CPL > IOPL.
After these tests, the actual bitmap is referenced. The offset of the start of the bitmap is read
from the BitMapBase field in the TSS (at offset 66 hex) and added to the ByteOffset of the
relevant bits in the bitmap formed by shifting the I/O address right by 3. Two bytes are read
at this byte address to ensure that the necessary bits are read for all possible I/O address align
ments and lengths. The length mask is formed based on the size of the I/O reference from 1

*L4 bllt,™g for 1 to 4 byte I/O references. This length mask is shifted left by'the I/Oaddress MOD 8 to align the low order mask bit with the BitMap bit corresponding to the I/O
address. The Length mask is ANDed with the bytes read from the BitMap to clear the
irrelevant bite.If the result is zero, the I/O access is allowed. If the result is non-zero one or
more of the I/O addresses spanned by the reference is not accessible, and a GP Fault is sip-
n a i l e d . *

1.2. Special OS Considerations

1.2.1. Initializing for the Null BitMap

^i 38t °n T^5 ^ haVC U0 controUed 0lJy by IOPL, and to be disallowed in Virtual 86mode, the BitMapBase field can simply be initialized to FFFF hex. This will provide an offset

bkm^r lhC TSS Umit (aSSUmin8 thc TSS ^gment * <64K!). which specifies the "null*

1.2.2. Watchdog Timer Protection for Interrupt Disabling
If an OS provides an application in Virtual 86 mode direct access to the IF flag by setting IOPL
to or if it permits the application to disable interrupts through supervisor intervention a
watchdog timer can be attached to thc NMI interrupt to gain control back if the application
leaves interrupts diabled for too long an interval. One method for doing this is to use two
timers: one is the normal system timer that interrupts the CPU periodically with the highest
priority INTR interrupt level. When this timer interrupt is serviced, the watchdogtSerls

I n t c l P r o p r i e t a r y I n f o r m a t i o n ipcjs.org

reloaded with a count that is the imn of the normal interval plus the maximum interrupt
disabled interval. If the INTR interval timer is serviced within this latency after INTR is
raised, the watchdog timer will be reset without giving an NMI. If the INTR interval timer
interrupt is not serviced within the maximum latency, the watchdog timer will interrupt the
processor with an NMI. so that control can be regained.

1.2.3. Virtual 86 Handling of INT n If IOPL-3
In Virtual 86 mode, the INT n instruction will cause a GP(0) fault if I0PL<3. This allows
the OS to cleanly intercept interrupts from the Virtual 86 task. However, if the OS provides

•S'nXTI6 Tk d,m:t tCCCSS to W'I0PL ffiUSt * « at 3« whkh W d»We the trappS
«.£T rt ^r AuD an *m * pr0Vidcd by thc 0S * a careful choic« <* DPL for thegates in the IDT, and by extra code at the front of interrupt handlers that have DPL-3. which

n^U\Te 8a leS i0*^* * ' °S " P6^™ a fUDCt ion- A*y vec«* ° *« mustnot be accessible using the INT n instruction can be protected from application program access
(including Virtual 86 mode access) by setting DPL<3 in IDT entry n. Any vector a SI
npf , 8^,b,e Viatbe ** m i**™*0* *> Level 3 protected mode programs must haveDPL-3. which means ,t will also be accessible to a Virtual 86 mode program. Handlers for
hese interrupts may need to have code to check to see if the "calling" program was executing

in Virtual 86 mode or Protected Mode, and take action appropriately. This check at each
common software interrupt gate" to the OS will be a bit faster than the previous method

of sifting through the debris after a GP fault to determine that a software interrupt occured
from Virtual 86 mode, but it will require potentially several copies of this "virtual mode"

Intel Proprietary Information pcjs.org

* 3 * 2 + 1 + 0 (B y t e O f f s e t)

J _ ° J _ ° + 7 0 7 0 (B i t O f f s e t)

|^^0_110|00°0ini|0100110oio00000li| BitMapBase I/O 0..31

i??_???"I"^1010^*""°®^^^"00^'' B'tMapBase.4 I/O 32..63
^**^^*^f^*»la1 * * 1Tl1X111117IIIIIIIxT BitMapBase.8 I/O 64..95
IOMOOOOOI OOOOOOOO I OOOOOOOO IOOOOOOOOI BitMapBase+12 I/O 96..127

-♦
♦ . - _ « . « . + +

TSS LIMIT -> 1111111111 ... |
+ + _ _ _ +

This bi t map permits access to I /O ports 2 9 1? n ik

t f a • / " ° t h e r p o r t s a r e n o t a c c e s s i b l e t o a V i r t u a 8 6
?nm ' 2"? a.r! fccessible to a Protected mode task only if CPL <-IOPL. Note that the last byte before the TSS limit must be all

Examol? i:

IN EAX, 07H ; Read Dword port 7

0ffset= Byte 0, bit 7
Mask = 15 SHL 7 = 78H
BitString = 0100110000000011 (See map)

And 78H 0000011110000000

Fault! ReSUU 0000010000000°00 (Not Equal to Zero)

fJLajniLLe I:

OUT 33, AX ; Write word port 33 (Decimal)
0ffset= Byte 4, bit 1
Mask = 3 SHL 1 = 6H

BitStMAn9, In 11111100H111001 (See map)And 6H 0000000000000110
Result 0000000000000000

Result « 0 I/O allowed!

CONFIDENTIAL: INTEL PROPRIETARY INFORMATION

pcjs.org

