
INTERNAL CORRESPONDENCE

1.
386 LOADALL Instruction
Thc 80386 implements a LOADALL instruction capable of loading all visible machine state
from an area in memory. The function of this instruction is the same as the 80286 LOADALL
instruction [RASH]. Due to the architecture, and implementation of the 386, the. format of the
memory area used by the two processors is different. Conversion between these formats is pos
sible, requiring an algorithm to 'map' between the two formats, and compensate for the archi
tectural differences.
The attached tables illustrate the memory area used by LOAD A 1.1, The location of this area
in memory is dynamic, not fixed at 800H as in the 80286. The LOADALL instruction uses
E&EDI for the base of the LOADALL memory image. Note that the normal address computa
tion scheme applies to LOADALL; if protection is enabled (CROJE), and possibly paging is
enabled (CROJG), the physical address of the memory area will be computed by both seg
ment, and page relocation. A typical sequence to perform the LOADALL would be:

MOV AX, Dump_Area_Selector
•MOV ES,AX
MOV EDI, offset DumpJVrea
LOADAIJL

1.1. Background
As part of marketing the 286, most of the details of one of the 286 test instructions were pub
lished to selected customers and ISVs in a note entitled "iAPX 286 LOADALL Instruction f by
Bill Rash. The test instruction was named LOADALL for public consumption. The instruc
tion was published to provide two functions: to allow REAL mode code to access memory
above 1 Meg, and to allow a protected mode OS to simulate 8086 semantics for segment regis
ter loads as a key part of implementing a "virtual 8086 mode" on the 286. When the details
of the "LOADALL" instruction were released, we made it quite clear that the instruction
would not be supported on the 386. However, regardless of our warnings, by publishing the
details of the 286 LOADALL we effectively made it a part of the 286 architecture. People
will use the instruction anyway, and we must support the 286 LOADALL instruction on the
386.
The 386 has similar test instructions, which are "culturally compatible" with the 286 test
instructions. The instructions on both machines reload internal machine state from a block of
memory. However, the format of thc memory area is quite different, and the 386 LOADALL
loads more state. Things that were 16-bits on the 286 were stretched to 32 bits on the 386.

Int 1 Proprietary

pcjs.org



1.2. Emulating 2*6 LOADALL with 386 LOADALL
As noted above, the 386 LOADALL function is pretty close the the 286 LOADALL instruc
tion, and it is possible to reformat the 286 image to a 386 image and use the 386 instruction to
provide emulation capability. This requires the following:

o The 386 must trap the 286 LOADALL opcode.

o Need code to translate 286 LOADALL
format to 386 format.

The 386 traps the 286 LOADALL opcode, since the 286 LOADALL opcode (0F05) an illegal
opcode on the 386. The 386 LOADALL has a different opcode (0F07). A 386 OS that wishes
to emulate the 286 LOADALL can include an interrupt 6 (invalid opcode fault) handler to
emulate the 286 LOADALL. The invalid opcode fault handler will be invoked whenever the
286 LOADALL instruction occurs in the instruction stream. The fault handler can decode the
invalid instruction, and if it is the 286 LOADALL, can reformat the memory image in a new
area, and execute a 386 LOADALL Because the 386 LOADALL can load from an arbitrary
address, the block at 800H can be left undisturbed, with the reformatting done in a part of
the address space not accessible on the 286 (above 16 Meg. for example).
The information loaded by the 286 LOADALL falls into 3 categories programmer visible
registers, 286 specific temp registers, and "invisible" descriptor cache registers. There is no
problem with emulating the loading of the programmer visible registers, as these are compati
bly implemented on the 386 (and the 486. 586. _). The 286 also loads a number of temp
registers, but the values in these registers are "dead" when the next instruction (other than
STOREALL) begins execution. Consequently, the values loaded into the temp registers can
have no effecton 286 program execution, so these can be ignored. As long as the 386 temps
are also dead" when the next instruction begins (except for STOREALLl. there will be no
problems with 386-specific temp registers.
In order to ease the burden of supporting LOADALL on future processors, the temp register
dump/load area is at the top of the LOADALL block, so it can grow and shrink as required for
future implementations. Several difficulties occur when attempting to emulate the loading of
the invisible descriptor cache registers. Unfortunately, this is the main reason why the 286
loadall is an interesting instruction-
To verify that the 386 LOADALL can emulate the 286 LOADALL, we need to verify that all
of the invisible 286 descriptor cache entries modified by the 286 LOADALL are also
modified by the 386 LOADALL Any extra state can just be loaded with the 286 compatible
values. Some don't care values on the 286 are now recognized bv the 386. and so these mav
need to be parsed and reformatted.

1.2.1. Translating 286 LOADALL format to 386 LOADALL
This section sketches the algorithm for translating the 286 LOADALL format to the format
required for 386 LOADALL Special considerations for each field in the 286 descriptor cache
a r e g i v e n b e l o w : r
MSW

Only the lower 4 bits are defined on the 286. Bit 0 is sticky on the 286 LOADALL so
software must OR in the current setting of bit 0 of CRO with the 286 LOADALL image
to get the CRO image for the 386 LOADALL The ET bit is new on the 386. as is the PG
bit. Both of these bits should remain unchanged, and so should be copied from the
current CRO value. This can be done with the following code sequence:

Int„l Proprietary Information
pcjs.org



MOV EAX. CRO
AND EAX.8O0O0011H
MOV CX. LD286JUSW ; Load 286 MSW image
AND ECX. OFh ; mask low bits
OR EAX, ECX
MOV LD386.CRO ; value for 386 LOADALL

TR. LDT. DS.SS,CS,ES Selectors
These can be copied directly.

FLAGS
The 386 defines two new flags. The 286 flags can be copied directly to the low order 16
bits of the 386 flags. The RF bit can be set to 0. and the VM bit set if the emulated pro
gram is in Virtual 8086 mode (if the LOADALL was trapped in a Virtual 8086 pro
gram), and cleared otherwise. The VM bit can be copied from the EFLAGS image pushed
when the invalid opcode trap is taken.

D> The 286 IP register is copied to the low order 16 bits of the 386 EIP image, and the upper
16 bits of the EIP image cleared.

AX.SI
The 286 register images are copied to the lower 16 bits of the 386 32-bit registers. The
upper 16 bits can be random trash, or could be set to 0 for tidyness. Only EIP needs to
have its upper bits cleared.

ES-DS Descriptor Cache Entries
These can be reformatted to 386 descriptor cache entries. The base and limit values
translate directly to the 386. with*extra high-order zeros. However, the AR values mav
not translate.

The 286 uses only bit 1, bit 2. bit 3. and bit 7 of the AR bvte to do protection checks.
The 386 uses these bits, plus the "G" and "B" bits to perform checks. If the "G" and "B"
bits are 0. the checks are 100% compatible. The 286 and 386 may behave differently if
the DPL field of the SS and CS descriptor entries are not equal, or if the RPL fields of the
SS and CS selectors do not match the DPL field of the SS and CS descriptors. The 286
action in this case is described as "undefined" in the LOADALL description CPL is
loaded from the AR byte for the SS register (SS. not CS). If LOADALL is executed in
protected mode, errors may occur in subsequent instructions if the RPL field of SS or CS
selectors, or thc DPL of the CS descriptor, do not match the DPL field of the SS descrip
t o r . r

GDTR. IDTR Registers
These translate directly. The low 5 bytes of the 286 LOADALL image are moved to the
3S6 image, and the upper byte is set to 0.

LDT Descriptor Cache
Similar to other descriptor cache entries, except that only a subset of the AR bits are on
the 286 and 386. Only the P bit is supported on both machines, so this descriptor entrv
should translate directly.

TSS Descriptor Cache
Similar to other descriptor cache entries, except for the treatment of AR bits again. The
286 recognizes none of the AR bits. The 386 recognizes bit 3 to distinguish 286 TSS
types from 386 TSS types. The 286 descriptor can be copied to the 386 LOADALL image
directly, with bit 3 of the AR field set to 0.

To summarize, the 386 LOADALL instruction can be used to emulate the 286 LOADALL
except for some questionable areas involving the Access Rights bvtes in the "hidden" descrip
tor entries. The 286 LOADALL can be u*d to load these AR fields with inconsistent v^uS
ui which case we don't know what the 286 will do. let alone whether the 386 matches the
286 semantics. The 286 LOADALL can be emulated by the 386 LOADALL provided that the

I n t e l P r o p r i e t a r y I n f o r m a t i o n 3
pcjs.org



DPL and RPL values of CS and SS are all equal. Other cases are undefined by the 286 (and
cannot be induced by executing normal instructions).

13. LOADALL rued to switch Modes
Any of the 80386 operating modes may be selected with LOADALL. The PE (Protection
Enabled) bit is not 'Sticky' as in the 286. By setting the appropriate bits in the memory area,
the processor will resume execution in the selected mode after LOADALL For example, a
LOADALL could be performed to a page protected VM86 task by setting the following condi
tions in the memory image:

PE and PG bits set to 1
VM bit set in the extended flags register
8086 style segment register values into thc memory image
Descriptor bases to (Segment Reg SHL 4)
Access rights- (PresentJByteGranular etc.)
LIMIT set to 0000FFFFH.

As another example, RESET can be emulated with LOAD A 1.1, By loading The processors ini
tial values into the memory image as follows:

All registers-0
GSJSX>SJE£SS-0
CS-F000. EIP-FFFO, CS-Base-FFFFOOOO
GSJSJDSJES.SS-Base-0
GSJSJDSJES,SS-AR« Present
GSJSJDSJES.SS-Limit - FFFF
CR0=0
All other control registers-0 -==-
Debug Registers3^
EFLAGS-O

After thc LOADALL instruction, the processor state will be identical to reset, could be set to
run at a CPL <> 0 while in real mode. Combinations such as these arc possible, but may have
unexpected results. Placing thc processor into other than a *Naturar state should be avoided.

1.4. Caveats
Note that LOADALL provides no error checking. It is important that the descriptor entries
match the selector entries (Unless the intent is that they do not. for example to give a REAL
mode program access to the extended address space). After LOADALL the CPL of the proces
sor will be set to the DPL of the SS Descriptor entry. This is necessary to accomodate conform
ing segments. The IOPL will be set from the IOPL value in the EFLAGS image.
LOADALL is not restartable. If a page or segment fault occurs during execution of
LOADALL, the processor will be left in an undefined state. LOADALL is a privileged
instruction, so it can be executed only at level 0. It is assumed that the OS kernal will res-
vi^i use of this instruction, and will check for addressability and for consistent semantics
before executing the LOADALL

1.5. 386 LOADALL Memory Format
The following tables define the LOADALL memory format. The LOADALL instruction uses a
512-byte block of memory, where the lowest addressed byte is given in ESi(E)Dl). The area
above offset CC hex is used for processor dependent registers (temporaries, invisible registers).
These arc loaded into the processor, but will not affect normal program execution. All values
in the memory area are read from a four byte field, to keep the memory format DWORD
Aligned, but it is possible to locate memory area at a non-aligned address. In this case, the exe
cution time of LOADALL will DOUBLE For this reason, the memory dump area should
always be D-Word aligned.

I n t J i P r o p r i e t a r y I n f o r m a t i o n 4
pcjs.org



Each descriptor entry consists of 3 pieces:
AR
Base
Limit

The AR part has the same format as the second dword of a segment descriptor eicept that
only the AR byte (bits 8-15) and the G and B/D bits (bits 23 and 22) are used. All other bits
in the AR field are ignored. The Base and Limit parts contain full 32-bit values, fully
expanded and unscrambled from the 386 descriptor. In particular, the Limit field loaded for a
page granular segment gives a byte granular limit, so should contain the page Umit*4096 plus

80386 LOADALL memory format
User Register Area

Offset Register
000 CRO
004 EFLAGS
008 EIP
OOC EDI
010 ESI

"-"T 014 EBP
018 ESP
01C EBX

' 020 EDX
024 E C X 1
028 E A X •

_02C D R 6 j
030 D R 7 ,
034 TSSR(TSSSelector-Word)
038 LDTR(LDTSelector-Word)

_, 03C GS
040 FS
044 DS

1
I
1

048 | SS
04C i CS

"050 J ES

Int^l Proprietary Information
pcjs.org



80386 LOADALL memory format
Segment Descriptor Area

Offset Register
054 TSS(AR)
058 TSS(BASE)
05C TSSCUMIT)
060 IDTtAR)
064 ETtfBASE)
068 IDItLIMiT)
06C GDTtAR)
070 GDTtBASE)
074 GDItUMTT)
078 LDItAR)

_ 07C LDItBASE)
080 LDItUMTT)
084 GS(AR)
088 GSCBASE)
08C GSHUMTT)
090 FS(AR)
094 FS(BASE)
098 FSOJMIT)
09C DS(AR)
0A0 DS(BASE)
0A4 D S T U M T T ) !
0A8 SS(AR)
OAC SS(BASE)
0B0 SSdJNflT)
0B4 CS(AR)
0B8 CStBASE)
OBC CSdJMIT)
OCO ES(AR)
0C4 ES(BASE)
0C8 ' ES'LIMTT)

lat^l Proprietary Information
pcjs.org


