'80386-CO
STEPPING INFORMATION

E REVISION: te Site Versien ﬂ” A
~ : Be ;/h/i” "””[n"“

This document contains specification changes and design notes.

specification changes listed are permanent; the 80386 data sheet will be
modified to incorporate the changes.

NOTES:

80386-B1 component identifier readable in DH after reset: O3H
80386-Bl revision identifier readable in DL after reset: 03H

, pDH —— . €3
CH step DL o

At this time, Bl stepping parts are identified with one of the marks shown
below:

ii

ii AB0386-16 ii A80386-20

ii 840344 ii 840362
1 ii (FPO number) ii (FPO number)
(" ii m c i ’85 ’'86 ii m c i '85 ’86 *

ii

ii AE03€6 ES B:

ii

ii

ii m ¢ i 'B> '8¢

80386 Intel Corporation Proprietary 1



@W“

§peciticatioﬁ Changes

The specification changes numbered 1 through 4 for previous versions of the
80386 have now been incorporated in the latest version of the 80386 datasheet,

versi

on -002. The remaining specification changes, here, are now renumbered

beginning with 1. .

1.

80386

NT Bit and IOFL Bits in Real Mode

The NT bit and IOPL bits of the FLAGS register can be set in Real Mode of
the 80386. The exact behavior of these bits in 80386 Real Mode was not
previously documented. Note that in 80286 Real Mode, these bits can not
be set (they always remain 0 in 80286 Real Mode).

Coprocessor Data Pointer Stored by FSAVE/FSTENV Instructzons is Undefined
after Non-memory Instructions

The contents of the operand address field resulting from a FSTENV or
FSAVE are undefined if the preceeding coprocessor arithmetic instruction
did not have a memory operand. The exact contents of the operand address
field in this case was specified previously. This now confirms that the
operand address field is undefined in that case.

Bit String Insert and Extract Instructions Removed

Since the 80386 has unique and powerful 64-bit Double Shift instructions,
and fast multi-bit shift and rotate instructions, the "Bit String Insert"”
and "Bit String Extract™ instructions were removed. The insert/extract
complex instructions did not provide an additional benefit that fully
justified including them in 80386 silicon and all future compatible
processors. A review concluded that the B0386 user obtains full
performance in bit string manipulations using other powerful instructions
such as 64-bit Double Shift, and other multi-bit shift/rotate
instructions. These instructions support extremely fast manlpulatlon of
general unaligned bit strings of any length, by processing them in

32-bit chunks.

ERROR# Input Difference - Effect on PC/AT Compatible Coprocessor
Connection

On the 80386, latching the level of BUSY# when ERROR# becomes active will
cause FST and FSTP instructions which get errors to hang the 80386. On
the 80286, latching BUSY# when ERROR# becomes active (as performed in the
PC/AT) did not cause any problems.

Implications: The PC/AT uses a non-standard scheme to report 80287
errors to the 80286 (a scheme compatible with the non-standard scheme
used to report 8087 errcrs to the 8088 in the original PC). The scheme
used in the PC/AT works because a separate data channel is used by the
80286 to communicate with the 80287. However, the 80386 communicates
with the math coprocessor using microcode loops. Therefore, PC/AT-
compatible 80386 systems using an 80287 or 80387 numerics coprocessor
must carefully follow the recommendation below when replicating the
PC/AT’s non-standard method of reporting coprocessor errors.

How to properly replicate the PC/AT coprocessor error-reporting scheme

A workaround exists when replicating the PC/AT coprocessor interface in
80386-based systems. Note that this workaround needs to be incorporated
for the non-standard PC/AT scheme; the standard recommended 80386/80387
connection functions properly and the 80386 implementation will not be
altered. To understand the workaround, let us review the AT interface.
In the PC/AT, the ERROR# input to the 80286 is tied inactive (high)
permanently. The ERROR# output of the 80287 is tied to an interrupt port
(IRQ13). This interrupt replaces error signalling via the 80286’s ERROR#
input. To guarantee (in the case of an 80287 error) that INTR 13 will be
serviced prior to the execution of any further 80287 instructions, an

Intel Corporation Proprietary 2



edge-triggered flip-flop latches BUSY# using ERRORS as a clock. The
output of this latch is ORed with the BUSY! output of the 80287 and
drives the BUSY# input of the 80286. This PC/AT scheme effectively
delays BUSY# deactivation at the 80286 whenever an 80287 ERROR{ is
signalled. Since the 80286 BUSY# input remains active, the 80286 INTR 13
handler is guaranteed to execute before any other 80287 instructions may
begin. The INTR 13 handler clears the BUSY# latch (via a write to a
special I1/0 port) thus re-allowing execution of 80287 instructions. The
INTR 13 handler then branches to the NMI handler, where the user-defined
numerics error handler resides in PC-compatible systems.

The use of an interrupt guarantees that an error from a coprocessor
instruction will be detected. Latching BUSY# guarantees that any
coprocessor instruction (except FINIT, FSETPM, FCLEX) following the
instruction that raised the error will not be executed before the NMI
handler is executed. This approximates the way the 8087-8088 error-
reporting interface works in the original PC.

The 80386 can use a PC/AT-compatible interface to communicate with an
80287/80387 provided that while BUSY# is latched active, the 80386 PEREQ
input is also activated, and the 80287/80387 coprocessor is disabled. &An
80287 can be disabled using either NPS14# or NPS2. An 80387 should be
disabled using its STEN input (do not use the 80387 NPS1# or NPS2 inputs
to disable the 80387 in this case). Note that while PEREQ is
artificially activated as described above, the 80386 may issue I/O read
cycles for the coprocessor. It is permissible for the 80386 data pins to
float throughout such 1/0 read cycles.

Read Cycles Require Valid Data Bus Llevels

The 80386 requires that all data bus pins be at a valid logic state (high
or low) at the end of each read cycle, when READY# is asserted. The
system MUST be designed to meet this requirement. Therefore, do NOT
allow any data lines to be floating when the read cycle completes. NOTE:
The 1/0 read cycles just mentioned in the previous item, item 4, are free
from this requiremeng.

Implications: If the device being read is a 32-bit device, such as a

80386

32-bit memory, the system should present 32-bits of data to the 80386
even if not all of the 80386 byte enables are asserted.

I1f the device being read is a 16-bit or an 8-bit device, however, pullup
resistors can be used to guarantee valid logic levels on the upper data
lines, which otherwise would be floating. Note that bus cycles to 16-bit
and 8-bit devices typically include several wait states, but always
calculate the effects of R-C time constants to ensure the pullups will
drive proper logic levels onto the bus within the time required.

1/0 Permission Bitmap Must Reside Within TSS Offset OFFFFh

The 80386 requires that-the entire I/0 permission bitmap (including the
terminating byte of "OFFh"), which is part of an 80386 TSS, begin at an
offset no larger than ODFFFh. This guarantees the entire bitmap (up to 8
kilobytes + 1 terminator byte of OFFh) will reside at TSS offsets of
OFFFFh or less. Therefore, the pointer within a 386 TSS called
Bit_Map_Offset (15:0) must contain a value of ODFEFh or less under all
conditions, even when you intend the Bit_Map Offset to point beyond the
limit of the TSS itself.

BS16# Must Not Be Asserted During Pipelined Bus Cycles

In datasheet figures 5-16, 5-17, 5-19, and 5-22, the bus size 16 (BS16#)
input is shown as "don’t care” during T2P and T2l in pipelined bus
cycles. This is incorrect. 1In these figures, BS16# should be high
during states T2P and T21l. That is, once address pipelining has been
requested by asserting next address (NA#), BS16# must be negated for the
remainder of the current bus cycle.

Intel Corporation Proprietary 3



Implications: Don’t assert BS16¢ if NA4 has already be
asserted in the current bus cycle. y been sampled

Ea. Double Page Faults Do Not Raise Double Fault Exception
problem: If a second page fault occurs, while the processor is
attempting to enter the service routine for the first, then the processor
will invcke the page fault (exception 14) handler a second time, rather
than the double fault (exception B) handier. A subseguent fault, though,
will lead to shutdown. ’

vcrkaround: Nc workaround is necessary in a wcrking syster.

OrromblTES

BoL ™ can) hong Heo frovmast T

-~

e

80386 Intel Corporation Proprietary



-

besign Notes

1..

2.

80386

Read Cycles Require Valid Data Bus levels

Please refer to Specification Change 5 for important news on proper
system design for 386 read cycles.

Use of ESP as a Base Register With CALL, PUSH, and POP Instructions

This clarifies how ESP behaves with instructions that implicitly
reference the stack and explicitly reference another location in memory
using ESP as a base register.

Explicit Memory ESP value
Instruction Reference uses used as base
the ESP value...

CALL-indirect-thru-memory before old ESP
decrementing .

PUSH-from-memory before old ESP
decrementing

POP-to-memory after new ESP
incrementing

This is consistent in that the CALL-indirect-thru-memory and the PUSH-
from-memory both use the same ESP value.

Furthermore, the relation between PUSH-from-memory and POP-to-memory is
such that it allows the instruction sequence:

PUSH [ESP+n]) '

POP [ESP+n)
to have the desirable property of both instructions referencing the same
memory location.

'Use of Code Breaks to Debug 86/28€ Operating Systems

The RF bit in the EFLAGS register is cleared by a 16-bit IRET, making
it difficult to use the on-chip debug registers to set code breakpoints
to debug 16-bit operating systems. Data breakpoints work fine in all
cases, and code breakpoints work fine as long as all interrupt handlers
are 32-bits and return with 32-bit IRETs or task switches. 1In 16-bit
environments, software debuggers should use the CC (single byte INT 3
instruction) to place scftware breakpoints in code.

Use of ESP in 16-bit Code with 32-bit Interrupt Handlers

When a 32-bit IRET is used to return to another privilege level, and

the old level uses a 4G stack (B=l), while the new level uses a 64k

stack (B=0), then only the lower word of ESP is updated. The upper word
remains unchanged. This is fine for pure l6-bit code, as well as pure
32-bit code. However, when 32-bit interrupt handlers are present, 1l6-bit
code should avoid any dependence on the upper word of ESP. No changes
are necessary in existing 16-bit code, since the only way to access ESP
in USE16 segments is through the 32-bit address size prefix.

Intel Corporation Proprietary 5



