INTEL CORPORATION
3065 Bowers Avenue
Santa Clara. California 95051

{408) 987-8080 '
TWX - 910 338 0026 TELEX - 34-6372

Intal

September 1, 1987

Dear 80386 Customer:

We have identified 2 new errata items on the 80386 microprocessor.
These errata are documented in the attached 80386 Stepping Information
Sheet, dated September 1, 1987. We are sensitive to the effect any
errata in the 386 may have on your business; we have thereby devised
and verified several workarounds for these errata items so that you may
have a cheice of solution options. The workarounds are documented in
the Information Sheet and in the attached hardware design.

If you have questions not covered by the attached documentation,
please do not hesitate to contact your Intel Field Sales or
Applications Engineer. Our field and headquarters applications staff
are fully trained on these issues and are standing by to provide
whatever help you need.

Sincerely,

T | el T

Dana B. Krelle
80386 Marketing Manager

Cq (/ s ;'F y(.‘v
have C\vu/ ff,u-rs ‘£7¢_.\g‘

gmgt",- 0,

This document contains Specification chan

386-B1

80
STEPPING INFORMATION

REVISION: SEPTEMBER 1, 1987

ges, errata, and design notes.

Specification changes listed are permanent; the 80386 data Sheet wil) be
modified to incorporate the changes.

The errata items described herein will be Corrected on future Steppings of

the 80386.

NOTES:

80386-B1 component identifier Teadable in py
80386-B1 revision identifier Teadable in pg,

At this time, B}l Stepping parts are identifijed

below:;

|

|
i1 | ii

o |
{f ii ae0386-1¢ | i4
ii s$40344 | ii
ii (Fpo number) | ii
ii (m)(e) i 85 8¢ | i1

|

|

REVISION HISTORY:

Iz

8/1/87 Specification change 10 updased
Speeification change 11 adde -
Errata 20 ang 21 added

3386

after reset: 03H
after reset: 03H

with one of the marks shown

AB80386-20

§40362

(FPO numbar)

(m) (¢) 1 ’g5 ‘86

I

Intel Corporation Proptietary

SQecitica:ion Changes

The specification changes listed in this section apply to the latest version
of the 80386 datasheet, version -003 dated November 1986. This datasheet is
part of the 1987 Microprocessor and Peripheral Handbook, order number
230843-004. Specification changes 3, 5, and 6 have already been incorporated
into this datasheet; the remaining items will be included in future versions
of the datasheet.

1. NT Bit and IOPL Bits in Real Mode

The NT bit and IOPL bits of the FLAGS register can be set in Real Mode =34
the B80386. The exact behavior of these bits .in 80386 Real Mode was not
previously documented. Note that in 80286 Real Mode, these bits can not
be set (they always remain 0 in 80286 Real Mode).

2. Coprocessor Data Pointer Stored by FSAVE/FSTENV Instructions is Undefined
after Non-memory Iastructions

The contents of the operand address field resulting from a FSTENV or
FSAVE are undefined if the preceding coprocessor arithmetic instruction
did not have a memory operand. The exact contents of the operand address
£ield in this case was specified previously. This now confirms that the
operand address field is undefined in that case.

3. Bit String Insert and Extract Instructions Removed

Since the 80386 has unique and powerful €4-bit Double Shift instructions,
and fast multi-bit shift and rotate instructions, the "Bit String Insert”
and "Bit String Extract” instructions were removed. The insert/extract
complex instructions did not provide an additional benefit that fully
justified including them in 80386 silicon and all future compatible
processors. A review concluded that the 80386 user obtains full
‘performance in bit string manipulations using other powerful instructions
such as 64-bit Double Shift, and other multi-bit shift/rotate
instructions. These instructions support extremely fast manipulation of
general unaligned bit strings of any length, by processing them in

32-bit chunks. :

4. PC/AT Compatible Coprocessor Connection

Refer to the 80387 Stepping Information for a description of how to
connect the 80387 to the 80386 in a PC/AT-compatible manner. A small
amount of logic is necessary to use the PC/AT non-standard method of
reporting coprocessor errors. When using the recommended 80386/80387
connection (80387 BUSY#, ERROR#, and PEREQ pins connected directly to the
80386), no special provisions are necessary.

S. Read Cycles Require Valid Data Bus Levels

The 80386 requires that all data bus pins be at a valid logic state (high
or low) at the end of each read cycle, when READY# is asserted. The
system MUST be designed to meet this requirement. Therefore, do NOT
allow any data lines to be floating when the read cycle completes. NOTE:
The I/0 read cycles just mentioned in the previous item, item 4, are free
from this requirement.

Implications: If the device being read is a 32-bit device, such as a
§§-bzt memory, the system should present 32-bits of data to the 80386
even if not all of the 80386 byte enables are asserted.

1¢ the device being read is a 16-bit or an g8-bit device, however, pullup
resistors can be used to guarantee valid logic levels on the upper data
lines, which otherwise would be floating. Note that bus cycles to 1l6-bit
and 8-bit devices typically include several wait states, but always

80386 Intel Corporation Proprietary 2

10.

80386

calculate the effects of R-C time constants to ensure the pullups will
drive proper logic levels onto the bus within the time required.

I1/0 Permission Bitmap Must Reside Within TSS Offset OFFFFh

The 80386 requires that the entire I/0 permission bitmap (including the
terminating byte of “0FFh"), which is part of an 80386 TSS, begin at an
offset no larger than ODFFFh. This gquarantees the entire bitmap (up to 8
kilobytes + 1 terminator byte of OFFh) will reside at TSS offsets of
OFFFFh or less. Therefote, the pointer within a 386 TSS called
Bit_Map_Offset (15:0) must contain a value of ODFFFh or less under all
conditions, even when you intend the Bit_Map_Offset to point beyond the
limit of the TSS itself.

BS164 Must Not Be Asserted During Pipelined Bus Cycles

In datasheet figures 5-16, S-17, 5-19, and 5-22, the bus size 16 (BS16#)
input is shown as "don’t care” during T2P and T2l in pipelined bus
cycles. This is incorrect. 1In these figures, BS16# should be high
during states T2P and T2l. That is, once address pipelining has been
requested by asserting next address (NA#), BS16# must be negated for the
remainder of the current bus cycle.

Implications: Don’t assert BS16# if NA# has already been sampled
asserted in the current bus cycle.

Double Page Faults Do Not Raise Double Faul: Exception

If a second page fault occurs while the processor is attempting to enter
the service routine for the first, then the processor will invoke the
page fault (exception 14) handler a second time, rather than the double
fault (exception 8) handler. A subsequent fault, though, will lead to
shutdown.

Implications: Since double page faults normally de not occur, no
wocrkaround is necessary.

Alignment of Maximum-Sized Segments

If a maximum-sized code segment (limit=FFFFFFFFH) does not start on

a double-word boundary, then a segment limit violation (exception 13)
will occur when the processor attempts to fetch the first instruction
in the segment. This happens because the prefetcher, which always
fetches double words, detects a match with the segment limit, which is
one less than the segment base due to wrap around.

Implications: If a maximum-sized segment is used, it should be dword
aligned (i.e. the two least significant bits of the segment base should
be zero). Dword alignment is sufficient to ensure correct operation of
the 80386. 1In addition, Intel recommends that maximum-sized segments be
page aligned (i.e. the lowest 12 bits of the segment base should be
zero) for compatibility with future processors.

Move from 16-bit Segment/System Register to 32-bit Destination

This clarifies how certain instructions (wvhich imply a 16-bit operand
size) behave with various operands and operand sizes. These instructions
are: MOV r/ml6,Sreg; STR r/ml6; SLDT r/ml6; and SMSW r/ml6. When a
32-bit operand size is selected, and the destination is a register, the
16-bit source operand is copied into the lower 16 bits of the destination
register, and the upper 16 bits of the destination register are
undefined. With a 16 bit operand size and a register operand, only the
lower 16 bits of the destination register are affected (the upper 16 bits
remain unchanged). With a memory operand, the source is written to
memory as a 16-bit quantity, regardless of operand size. Thus, 32-bit
software should always treat the destination as l6-bits, and mask bits
16-31 if necessary.

Intel Corporation Proprietary : 3

11.

Coprocessor Signals BUSY#, ERROR# and PEREQ Recognized During Hold

In section 5.5.1, the 80386 Data Sheet states that all inputs except
HOLD, RESET, and NMI are ignored while HLDA is active. This list is
incomplete. In addition to these signals, the 80386 also recognizes
BUSY#, ERROR# and PEREQ during the bus hold acknowledge state. This
makes sense since these pins are dedicated to coprocessor signaling,
which occurs independent of the processor’s bus cycle. *

80386 Intel Corporation Proprietary °

Errata

1.

80386

Opcode Field Incorrect for FSAVE and FSTENV

Problem: If an FSAVE or an FSTENV is executed in REAL mode or in VIRTUAL
8086 mode, the opcode field stored in memory is incorrect if it should
have referred to a coprocessor instruction which transfers either two
bytes or ten bytes from memory to the coprocessor. The instruction and
operand linear address fields are correctly stored. Note that
coprocessor error-handling routines are the only routines possibly
affected. Also note that the problem does not occur in PROTECTED mode
programs (since no opcode is saved by FSAVE or FSTENV in that case) .

Workaround: In REAL mode or in VIRTUAL 8086 mode, the instruction linear
address field can be used to read the opcode from memory. Note that the
two bytes fetched need to be swapped to yield the image that FSAVE and
FSTENV normally stores. The following is a possible fixup sequence.

FSTENV [BX] ;save environment

MOV CX, [BX+8) ;get linear IP<19:16>

AND CX,0F000h ;treat it like a selector
MOV SI, [BX+6] ;get linear IP<15:0>

MOV FS,CX ;establish addressability
MOV CX,FS:[SI] :get raw opcode value
XCHG CH,CL ;swap bytes and

AND CX, 7FFh ; mask out top bits

;CX now has the opcode =-- store back if needed
MOV SI, [BX+8] ;get opcode word

AND SI,0F800h ;mask out the bad

OR SI,CX ;mask in the good

MOV (BX+8],SI ;and store back

The opcode saved within the FSAVE FSTENV operand is in the following
format:.

10 98 76543210

| | | I
lower three bits . mod r/m byte
of ESC byte

FSAVE, FRESTOR, FSTENV and FLDENV Anomalies with Paging

Problem: 1If either of the last two bytes of an FSAVE or an FSTENV
operand are for any reason not writeable, or either of the last two bytes
of an FRESTOR or FLDENV are for any reason not readable, the instruction
is not restartable. This problem will arise only in demand-paged
systems, or demand-segmented systems which increase segment size on
demand.

Workaround: A simple workaround is to write some value into the last two
bytes of the FSAVE/FSTENV operand just prior to the instruction, or read
the last two bytes prior to an FLDENV/FRESTOR. Another workaround is to
avoid having the operand of these instructions cross a page or segment
boundary. 1In paged systems, this can be accomplished by aligning these
operands on any 128-byte boundary.

Wraparound Coprocessor Operands

Problem: This can affect only situations where a coprocessor operand
straddles the limit of a segment of maximum size (i.e. OFFFFh for a 16-
bit segment or OFFFFFFFFh for a 32-bit segment) or within 108 bytes of
maximum size, thus wrapping around to offset 0 of the segment. Since

a wraparound situation is very abnormal for a compiler or programmer to
create, this does not affect a typical system.

Formally, the 80386 architecture does not perﬁit an operand (coprocessor
operands included) to wrap around the end of a segment. If the user

Intel Corporation Proprietary S

{ssues such an instruction nonetheless in a Protected Mode system, and
the operand starts and ends in valid, present pages of a segment, BUT
spans through an invalid or inaccessible page, the coprocessor may be put
in an indeterminate state. In such cases, an FCLEX or FINIT instruction
needs to be executed before any other coprocessor instruction is issued.

Workaround: In Real Mode, this is not a problem since protection is not
enzbled. In Protected Mode, this problem is avoided simply by not
creating coprocessor operands which wrap around the end of the segment,
or by aligning the base of all segments on page boundaries.

IRET to TSS with Limit too Small

problem: If an IRET performs a task switch to a TSS of proper descriptor
type but invalid (too small) limit, a Double Fault (exception 8) will
result instead of a Invalid TSS Fault (exception 10) as should result.
Furthermore, if the Double Fault entry in the IDT is a trap gate, a
shutdown results. In a related topic, if the 7SS Fault entry in the IDT
is invalid for any reason (e.g. bad AR byte), then instead of a Double
Fault (exception 8), a shutdown results.

Workaround: A working system, one that creates TSS segments of adequate
size to hold the processor state (44 bytes for the TSS of a 16-bit task,
104 bytes for the TSS of a 32-bit task), will not encounter any problems
here. A working system should also provide a valid gate (interrupt,
trap, or task gate) in the IDT for exception 8.

Single-Stepping First Iteration of REP MOVS

Problem: If a REPeated MOVS instruction is executed when single-stepping
is enabled (TF = 1 in EFLAGS register), a single-step trap (exception 1)
is taken every two move Steps, but should occur each move step. Also, if
a data breakpoint is hit duzing a odd iteration number of REP MOVS, the
data breakpoint trap is not taken until after the next even-numbered
jteration. If the REP MOVS ends with an odd number of iterations, and
single-stepping or data breakpoints are enabled, then a single-step trap
or data breakpoint trap on the final iteration will properly occur after
the final, odd-numbered iteration.

Workaround: When using the Trap Flag or data breakpoints with a debugger
utility, this minor variation of REP MOVS must be accepted, unless an
effort is made to have the debugger emulate the REP MOVS rather than
actually execute it.

Task Switch to Virtual 8086 Mode Doesn’t Update Prefetch Limit

Problem: When a task switch to virtual 8086 Mode is performed, the
prefetch limit is not updated to become OFFFFh, but instead remains at
its previous value.

Workaround: Use the IRET instruction to transfer to Virtual 8086 Mode.
Using IRET is the preferred method for most instances, especially when
the master OS dispatches a Virtual 8086 Mode program, because IRET can
cause the transition without a task switch.

Wrong Register Size for string Instructions in Mixed 16/32-bit
Addressing Systems

Problem: If certain string and loop instructions are followed by
instructions that either:

1) use a different address size (that is, if either the string
instruction or the following instruction uses an address size
prefix), or

2) reference the stack (e.g. PUSH/POP/CALL/RET) and the "B” pit in the
SS descriptor is different from the address size used by the string

80386 Intel Corporation Proprietary 6

PRy S

instructions,

then one or more of (E)CX, (E)SI, or (E)DI is not updated_prope:ly. The
size of the register (16 vs. 32) is taken from the following instruction
rather than from the string or loop instruction. This could result in
updating only the lower 16 bits of a 32-bit register, or in updating all
32 bits of a register being used as 16 bits. The instructions and
registers affected by this are listed below: .

Instruction Register(s)
MOVS (E)DI
REP MOVS (E)SI1
STOS (E)DI
INS (E)DI
REP INS (E)CX

Workaround: No workaround is necessary if all code is 16-bit or if all
code is 32-bit. The problem only occurs if instructions with different
address sizes are mixed together, or if a code segment of one size is
used with a stack segment of the other size.

In a system which mixes address sizes, add a NOP after each of the above
instructions and ensure that the NOP has the same address size as the
string/loop (i.e., if the string/loop instruction includes an address
prefix, place the same address prefix before the NOP: conversely, if the
string/loop instruction does not have an address prefix, do not place a
prefix before the NOP). .

8. FAR Jump Located Near Page Boundary in Virtual 8086 Mode Paged Systems

Problem: 1In Virtual 8086 Mode, if a direct FAR jump (opcode EAN)
instruction is located at the end of a page (or within 16 bytes of the
end), and the next page is not cached in the TLE, the prefetcher limit is
not set by the FAR jump instruction to the "end"™ on the new code segment,
but rather is left at the "end"™ of the old code segment. This can allow
execution beyond the end of the new segment without triggering a segment
limit vioclation. Or it can result in a spurious GP fault if the old and
nev segments overlap, and a prefetch occurs beyond the limit of the old

Segment.

Note that the prefetch limit is checked on the linear address, not by
comparing IP to OFFFFh.

Workaround: All existing 8086 programs use only 16-bit addressing, and
thus will not execute code at offsets greater than OFFFFh from the code
segment base. Thus the lack of detection of walking off the end of a
code segment should not impact working 8086 programs.

A workaround to the spurious GP fault, if it occurs, is to simply IRET
back to the faulting instruction, since the IRET will correctly set the
prefetch limit. 1If the fault handler has control of the single-step
function, a very simple workaround is to attempt to single-step the
faulting instruction. If the single-step succeeded, the handler could
clear the fault, turn off single-stepping, and IRET. If a GP fault
occurred attempting to single-step the instruction, a "real®™ GP fault is
the cause.

If the fault handler cannot access the single-stepping function, it still =

can check for "real” GP faults which must be emulated by the master OS,
for example, I/0 instructions that need to be emulated, CLI/STI
instructions that must be emulated, etc. If none of these faults are
recognized, the fault handler can assume this errata caused the GP fault
and simply IRET back to the instruction.

9. Page Fault Error Code on Stack Not Reliable

80386 : Intel Corporation Proprietary 7

10.

11.

12.

problem: When a Page Fault (exception 14) oécu:s, the 3 defined bits in
the error code may be unreliable if a certain sequence of prefetch is
happening at the same time.

Workaround: Although the page fault error code pushed onto the page
fault handler’s stack can be unreliable, as described, the page fault
linear address stored in register CR2 is always correct. The page fault
handler should refer to the page fault linear address in CR2 to access
the corresponding page table entry and thereby determine whether the page
fault was due to a page "not present” condition, or to a usage viclation.

Certain I/0 Addresses Incorrect when Paging is Enabled

Problem: When Paging is enabled, accessing I/O addresses in the range
00001000n=-0000FFFFh (4K through 64K-1) or accessing coprocessor ports
(/0 addresses 800000F8h-800000FFh) as a result of executing coprocessor
opcodes, can generate incorrect 1/0 addresses if paging is enabled and
the corresponding linear memory address is marked "present” and "dirty."

Furthermore, when paging has been enabled and is then turned off, paging
translation continues to occur for memory or 1/0 cycles (I/0 as described
above) to linear addresses still stored in the TLB, but paging does not
occur for linear addresses that result in a TLB miss.

Workaround: Unless paging is used, this item is not a problem. 1If
paging .= usex but all 1/0 ports are below 00001000k (as in a PC-DOS
system), then I/0 is no problem. .

1f paging is used and I1/0 ports exist in the range 00001000h=-0000FFFFh,
then either have the memory pages at those linear addresses marked "not
present™ (to avoid having those pages table entries cached in the TLB),
or if "present,"” have those pages mapped such that bits 12-15 of the
physical address equal bits 12-15 of the linear address. Alternatively,
rze-assign any I/0 ports in the range 00001000n-0000FFFFh to below

00001000nh.

1f paging is used and the coprocessor is also used, then have the memory
page at linear address 80000xxxh either marked "not present” (to avoid
having that page table entry cached in the TLB), or if “"present,” have
the page mapped such that bit 31 (the most significant bit) of that
page’s physical address is a 1. '

To completely disable 80386 paging when paging was previously enabled,
the 80386 TLB should be flushed immediately after resetting the PG bit in
CRO. The TLB can be flushed, you recall, by writing a Page Table
Directory base address to register CR3.

Wrong ECX Update by REP INS

Problem: The ECX register (or CXx in case of 16-bit operations) is not
updated properly in the case of a REP INS instruction (INPut string
instruction with any REPeat prefix) that is followed by an early-start
instruction (e.g. PUSH, POP or memory reference instructions). After any
REP-prefixed instruction, ECX is supposed to be 0 (null). But in the
case of a REP INS instruction, ECX is not updated correctly and is
OFFFFFFFFh (or CX is OFFFFh in case of 16-bit operations). It should be
noted that the REP INS executes the correct number of iterations and EDI

(or DI) is updated properly.

Workaround: After a REP INS instruction, do not rely on ECX (or CX)
being zerc. Hence, a new count (if any) should be MOVed into ECX, rather

than being ADDed into ECX.

NMI Doesn’t Always Bring Chip Out of Shutdown in Obscure Condition with
paging Enabled

Problem: If paging is enabled, and if the IDT gate for the Double Fault

80386 Intel Corporation Proprietary : 8

™

13.

80386

handler (the gate for exception 8) points to the null descriptor slot,
descriptor 0, in the GDT (this would.be very a strange way to set up a
system), and a TLB miss occurs when accessing the null descriptor slot,
the chip enters shutdown as it should in this case. 1In this specific
case however, an incoming NMI will not be able to bring the 386 out of
shutdown. In this specific case, only reset will bring the 386 out of

shutdown.

Workaround: Ensure that the IDT gate for the Double Fault Handler has
a non-null selectors for CS, and that SS of the destination level is also

non-null. .

HOLD Input During Protected Mode Interlevel IRET when Paging is Enabled

Problem: Under specific situations inveolving paging and the page
privilege bits, the HOLD input, and a RET or IRET instruction performing
an inter-level return to level 3, a problem can develop. These
situations can be avoided by the workarounds given.

The first situation, when the inner level stack (levels 0, 1, and 2)
is not dword aligned (or not word aligned in the case of a 16-bit
TI)RET), requires that several conditions occur simultaneocusly:

1) Paging must be enabled, and the page table and directory entries
for the inner level stacks must be marked as supervisor access only.

2) The software must execute an inter-level RET or IRET to a :
Protected Mode program at privilege level 3. An inter-level IRET to
Virtual 8086 Mode does not exhibit this problem. An inter-level RET
or IRET to level 1 or 2 does not exhibit this problem.

3) The inner level stack must be unaligned to a dword boundary
(word boundary for a 16-bit (I)RET).

When the first situation occurs, a page fault (exception 14) occurs
spuriously, indicating a page level protection violation during a "user"
level read of the inner level stack.

The second situation, whether or not the inner level stack is dword
aligned (or word aligned in the case of a 16-bit (I)RET), also requires
that several oconditions occur simultaneously:

1) Paging must be enabled, and the page table and directory entries
for the inner level stacks must be marked as supervisor access only.

2) The software must execute an inter-level RET or IRET to a
Protected Mode program at privilege level 3. An inter-level IRET to
Virtual 8086 Mode does not exhibit this problem. An inter-level RET
or IRET to level 1 or 2 does not exhibit this problem.

3) The bus HOLD input must be asserted during the read cycle which
pops ESP (or SP) off the inner stack as a result of a RET or IRET
instruction.

When the second situation occurs, no exception is generated, but the
processor will drive an incorrect physical address during the read cycle
in which SS is popped from the inner level stack.

Workarounds: A software workaround to both situations is to mark all
pages which contain the inner level stacks as user readable. This
prevents either the first or second situation from occurring. The
segmentation system can be used to prevent user access to the linear
addresses containing the inner-level stacks.

A workaround if not using the HOLD input is merely to keep the inner-
level stacks aligned.

Intel Corporation Proprietary ‘ 9

A Hardware workaround if using the HOLD input but not using the

Software workaround above is the foliowing: Since the problem occurs
during the first cycle after 2 locked cycle to read the CS descriptor, a
hardware workaround is to prevent a HOLD request from hitting the
processor during bus cycle following a LOCKed cycle. This can be
accomplished with a latch that delays the LOCK# signal through a
£1ip-flop clocked by READY# to gate a HOLD request going into the chip.
This will prevent a hold request from getting to the 80386 until after
the completion of the first cycle after a LOCKed cycle. For the hardware
workaround to be sufficient, all stacks must be properly aligned, and
BS16# must be tied inactive. .

14. Protected Mode LSL Instruction Should not be Followed by PUSH/POP

problem: This item pertains only to Protected Mode. If the Protected
Mode LSL instruction (Load Segment Limit instruction, executable only in
Protected Mode) is immediately followed by certain instructions that
perform a stack operation, such as PUSH or POP (see exact list below),
the value of the (E)SP register may be incorrect after the stack
operation. Note that stack operations resulting from interrupts or
exceptions following LSL do update (E)SP correctly.

Workaround: Do not immediately follow the Protected Mode LSL instruction
with any of the following stack operation instructions: IRET (intra-
task), POPA, POPF, POP (mem, reg, seg-reg), RET (intrasegment or
intersegment), CALL (direct intrasegment, direct intersegment, indirect
intrasegment via reg), ENTER, PUSHA, PUSHF, PUSH (mem, reg, seg-reg,
immed) . Other instructions that operate on the stack (e.g. CALL indirect
via memory, and LEAVE) can be used safely after the Protected Mode LSL.
Note that even if a forbidden instruction immediately follows LSL, (E)SP
may still be updated correctly, since this problem is data-dependent and
only occurs if the LSL operation succeeded (i.e. if LSL set the 2r flag).

15. LSL/LAR/VERR/VERW Instructions Malfunction with Null Selector

Problem: The Protected Mode instructions LSL, LAR, VERR or VERW executed
with a null selector (i.e. bits 15 through 2 of the selector set to zero)
as the operand will operate on the descriptor at entry 0 of the GDT
instead of unconditionally clearing the ZF flag.

workaround: The "null descriptor" (i.e. the descriptor at entry 0 of the
GDT) should be initialized to all zeros. If the "null descriptor” is
initialized to all zeros (i.e. an invalid value), the access made by
these instructions to the "null descriptor” will fail (since these
instructions only operate on valid descriptors). The failure will be
reported with ZF cleared, which is the desired behavior when the operand
is a null selector. Note that many systems already have the "null
descriptor” in the GDT initialized to zerocs, as is desired for this
workaround.

16. "Not Present”™ LDT in VM86 Task Raises Wrong Exception

Problem: A task switch to a VM86 task that has a "not present” LDT
descriptor will cause a Segment Not Present fault (exception 1ll) rather
than an Invalid TSS fault (exception 10).

Wworkaround: The simplest workaround is to use a NULL selettor for
the LDT in a VM86 task, since the LDT is not used when executing in
virtual 86 mode. However, if an interrupt or exception occurs, the
processor will switch out of Virtual 86 mode, into protected mode to
handle the interrupt, without switching tasks. Thus, the operating
system should be structured so that all Interrupt and Trap gates
active when executing a VM86 task reference segments in the GDT.

If an LDT must be supplied for a task that executes in Virtual 86 mode,

there are several easy workarounds. One {s to ensure that LDT segments
are never marked "not present” in their segment descriptors. Paging is

80386 Intel Corporation Proprietary _ 10

17.

18.

19.

80386

not affected by this errata. LDT segments can be paged out and marked
"not present” in their page descriptors in systems which use paging.

If the operating system must mark the LDT segment descriptor "not
present”™, the "not present” (exception 11) handler must be able to

handle the case of a "not present” LDT during a task switch. The "not
present” exception is reported with the LDT selector as the error code
and with the VM bit set to 1 in the EFLAGS image of the caller. Since

a VM86 task cannot normally raise a "not present” fault, the “"not
present” exception handler can detect this case by checking if the stored
VM bit is set. 1If so, the fault can be redirected to the 7SS Fault

handler.
Coprocesscr Instructions Crossing Page/Segment Boundaries

Problem: 1If the first byte of a coprocessor (ESC) instruction is
located on the last byte of a page or segment, and the second byte is
located on a page or segment which would create a fault, then the
processor will hang when it tries to signal the fault. The processor
remains stopped until an interrupt, NMI, or RESET occurs. This errata
applies only to coprocessor instructions in systems which use virtual

memory.

Workaround: 1In virtual memory systems, the time-slice or watchdog timer
provides an easy workaround, since a timer interrupt will always cause
the processor to begin interrupt processing. The timer routine should
test the following conditions to determine if this erzata was
encountered.

1) The saved CS:EIP must point within 8 bytes of the end of a page.

2) The last byte within the page must contain an ESC opcode.

3) All bytes between the saved CS:EIP and the ESC opcode must contain
valid prefix opcodes (segment override 26h, 2Eh, 36h, 3Eh, 64h, 65h,
address size override €7h, operand size override 66h) .

4) The next page is not present, or not accessible.

If all four conditions are true, then the timer routine can assume this
errata was encountered, and signal a page fault, which will clear

the condition. This workaround should be placed in the Operating System,
so that applications programs are unaffected.

Breakpoints Malfunction after Reading CR3, TR6, or TR?

Problem: Breakpoints associated with the four debug registers (DR0O-3)
will not work corzectly after a MOV from CR3, TR6 or TR? is executed.

The contents of DR0-3 are unaffected: however, spurious breakpoints may
result. This condition persists until the processor executes the next
Jump instruction. This errata does not affect the breakpoint instruction
(opcode 0CCh) or the single-step trap (TF, bit 8 in EFLAGs).

Workaround: Breakpoints will work correctly if the following sequence
is always used to read CR3, TR6, or TR7.

1) Disable breakpoints by clearing G0-G3, LO-L3 in DR?
2) MOV from CR3, TR6, or TR7 to the destination

3) Jump to the next instruction

4) Re-enable breakpoints

Return Address Incorrect for Segment Limit Fault during FNINIT

Problem: 1In protected mode, if the segment limit is set so that the
last byte of an FNINIT opcode falls on the last byte of a segment, then
the processor will indicate a segment limit fault (exception 13), with
the return address (saved on the -stack) pointing to the FNINIT opcode.
Since the FNINIT opcode falls entirely within the segment, the return
address should point to the next instruction.

Intel Corporation Proprietary 11

20.

21.

Workaround: In systems which restart .instructions on segment limit
faults, the exception handler should. test for an FNINIT instruction at
the end of a segment and adjust the return address accordingly.
Alternatively, the exception handler can leave the return address
unchanged, and allow the FNINIT to be executed a second time. In systems
in which walking off the end of a segment indicates a nonrecoverable
software error, no workaround is necessary.

VERR/VERW/LAR/LSL Instructions Malfunction with Bad Selector

problem: If the operand of a VERR, VERW, LAR, or LSL instruction is not
accessible (due to the selector value exceeding the GDT/LDT limit or a
null LDT), and no instruction following the VERR/VERW/LAR/LSL (in the
prefetch queue) is a JMP or CALL or has a memory operand, then the
processor will hang up after executing the VERR/VERW/LAR/LSL. The
processor remains stopped until an interrupt, NMI, or RESET occurs.

This errata applies only to the protected mode.

wWorkazound: No workaround is necessary in systems with a timer
interrupt. If the processor stops as a result of this errata, the
timer interrupt will cause the processor to begin interrupt processing.
Upon completion of the interrupt handler (via IRET), the processor will
resume execution with the instruction following VERR/VERW/LAR/LSL.

1¢ a timer interrupt {s not available, another workaround is to follow
each VERR/VERW/LAR/LSL {nstruction with a JMP or Jcc instruction. To
work correctly, botb instructions must be aligned so that the last byte
of the VERR/VERW/LAR/LSL {nstruction, and all bytes of the JMP
instruction, reside in the same doubleword. This guarantees that the
processor will have fetched the entire JMP instruction before executing
the VERR/VERW/LAR/LSL.

Coprocessor Malfunctions with Paging Enabled

problem: Under certain conditions of memory wait-states and HOLD
requests, a problem can occur. If paging is enabled, and the prefetch
unit (internal to the 8038€) requests a memory read cycle at the same
time that the coprocessor requests an operand transfer cycle (by
asserting PEREQ), then the processor may drive out an incorrect address
when transferring data from the cCOprocessor. Specifically, the processor
will drive an I/0 address of 000000FCH (with A3l low), rather than
800000FCH (with A3l high). As a result, the 80387 may be left in an
indeterminate state. This errata occurs only when the 80386 is executing
an ESC instruction with a memory operand while paging is enabled.

Workaround: Several workarounds are possible. The recommended
hardware-only workaround is to add a state machine which prevents

the PEREQ signal from hitting the processor while the prefetcher may be
active. The state machine should monitor the processor’s bus activity.
1f the bus is idle for more than eight clocks (while HLDA is negated),
the state machine can assume the prefetch queue is full and allow the
80387 PEREQ to be passed on to the 80386. Otherwise, 80386 PEREQ should
pe forced inactive. A PAL implementation of this workaround is provided
in a separate document. Note that.this method of determining when the
prefetch queue {s full works only during ESC instructions with memory
operands, since the processor must wait for the ESC to finish before
executing any subsequent instructions. .

Another hardware-only workaround is possible if no 1/0 device

exists at address 000000FCH. If the processor performs an 1/0 cycle
to this address, an external decoder can assume the I/0 cycle is
intended for the coprocessor., and enable the coprocessor accordingly.
Note that decoding the 1/0 address will require 15 ns if implemented
in a B-PAL. Thus, a state machine must be provided which asserts the
80387 ADS# pin one clock after 80386 ADS#, to allow sufficient time

to decode.

80386 Intel Corporation Proprietary 12

80386

An OS/hardware workaround is to locate.the Page Directory Table at
address 80001000H or higher (1.e. CR3 bit 31 is set). If memory is not
available at address 80001000H, the hardware should be modified to
ignore A3l when decoding memory addresses (A31 should still be used as
a coprocessor select). This may be accomplished by disconnecting the
system’s A3l from the processor, and connecting it to A30.

An OS-only workazound is to set the EM bit in CR0O, forcing the

processcr to trap on every ESC instruction. The OS can then execute.the
ESC instruction in a controlled environment. Specifically, within the
exception 7 handler, the ESC instruction should be followed by a JMP..
Both instructions should be aligned so the last byte of the ESC
instruction, and all bytes of the JMP reside within the sames doubleword.
Aligning the instructions in this manner guarantees that the processor
will have prefetched the entire JMP instruction before executing the ESC.
By stopping the prefetcher, the JMP prevents this errata from occurring.
Before implementing this workaround, the OS must first check the 80386
revision identifier (in DX after RESET) to determine if a workaround is
necessary. Note that using this workaround will have significant
performance impact on numerics software. Care should be taken to ensure
that any OS workaround also satisfies errata 10.

Intel Corporation Proprietary ‘ 13

Design Notes

1.

Read Cycles Require valid Data Bus L;vels

pPlease refer to Specification Change 5 for important news .on proper
system design for 386 read cycles.

Use of ESP as a Base Register With CALL, PUSH, and POP .Instructions

This clarifies how ESP behaves with instructions that implicitly
reference the stack and explicitly reference another location in memory
using ESP as a base register.

Explicit Memory ESP value
Instruction Reference uses used as base
the ESP value...

CALL-Indirect-thru-memory before old ESP
decrementing

PUSH-from-memory — before old ESP
decrementing

POP-to-memory after new ESP
incrementing

This is consistent in that the CALL-indirect-thru-memory and the PUSH-
from-memory both use the same ESP value.

Furthermore, the relation between PUSH-from-memory and POP-to-memory is
such that it allows the instruction sequence:

PUSH (ESP+n)

POP [ESP+n]
to have the desirable property of both instructions referencing the same
memory location.

Use of Code Breaks to Debug 86/286 Operating Systems
The RF bit in the EFLAGS register {s cleared by a 16-bit IRET, making

it difficult to use the on-chip debug registers to set code breakpoints
to debug 16-bit operating systems. Data breakpoints work fine in all

" cases, and code breakpoints work fine as long as all interrupt handlers

are 32-bits and return with 32-bit IRETs or task switches. In 16-bit
environments, software debuggers should use the CC (single byte INT 3
instruction) to place software breakpoints in code.

Use of ESP in 16-bit Code with 32-bit Inte:ruét Handlers

When a 32-bit IRET is used to return to another privilege level, and

the old level uses a 4G stack (B=1), while the new level uses a 64k
stack (B=0), then only the lower word of ESP is updated. The upper word
remains unchanged. This is fine for pure 16-bit code, as well as pure
32-bit code. However, when 32-bit interrupt handlers are present, l6-bit
code should avoid any dependence on the upper word of ESP. No changes
are necessary in existing 16-bit code, since the only way to access ESP
in USE16 segments is through the 32-bit address size prefix.

80386 Intel Corporation Proprietary 14

intel _ . Intel Corporation Proprietary

A Hardware Workaround for the 80386 Paging/Coprocessor Errata

This document describes a simple hardware workaround for the 80386 Paging/Coprocessor
errata. The workaround is software transparent, creates no timing problems, and is suitable for
daughtercard construction. It does nor affect processor performance on non-numeric programs,
but will have a slight performance impact on numeric programs. The circuit we’re about to
describe has been built and tested in several 80386 machines. As always, complete PAL codes
and schematics are included. For a description of the errata, consult the 80386 Stepping
Information, dated 9-1-87, errata number 21.

The workaround consists of adding a PAL to control the PEREQ (Processor Extension REQuest)
signal received by the 80386. The basic idea is to prevent a PEREQ from hitting the processor at
a time when a prefetch request may be pending internally. Specifically, the PAL contains a state
machine to monitor 80386 bus actvity, a counter to keep track of idle cycles, and a state machine

to mask PEREQ if necessary.

The operation of the circuit is as follows. During active bus cycles, the counter is cleared. When
an idle cycle occurs (with HLDA negated) the counter is incremented. When § idle cycles have
been counted, the circuit assumes the prefetch queue is full and allows a PEREQ to pass through
to the 80386. Otherwise, 80386 PEREQ is forced inactive. Thus, a coprocessor request can only
be honored after the prefetcher has stopped. - By monitoring the processor’s bus cycles, the
circuit functions properly for all combinations of HOLD requests and memory wait-sates. In
applying this circuit, one should allow at least 8 clocks between consecutive HOLD requests, in
order to let ESC instructions complete. Also note that this method of determining when the
prefetch queue is full works only during ESC instructions with memory operands, since the
processor must wait for the ESC to finish before executing any subsequent instructions.

28-22-8 IXSHOHIO0YS a3
T0¥1N0D 03¥3d

el
<1
91
19 |
vl
€l
el
1l

Lmavnorsoo

ERBREBEE

A0

s | oo

aey9l
1vd

13XJ20S
98€08

module peregmod:;
flag ‘-r3’; , , _
title 'PEREQ mask ed grochowski 8/24/87 intel corporation’

"This PAL accepts status information from the 80386 and uses it
@W" "to track bus cycles. This PAL generates a gated PEREQ output, which
‘ nis activated only when the prefetch queue is full.

pall device ’'plér8’;
h,l,¢,x=1,0,.C.,.X.;

d pin 10;
32c pin 20;
oce pin 11;
clk2 pin 1; 80386 CLK2
reseth pin 2; "high during reset
ads pin 3; "low to begin bus cycles
ready pin 4; "low to end bus cycles
mio pin S; "high during memory cycles, low for i/o
dc pin 6:; "high for data, low for code
hlda pin 7; "high during hold acknowledge
busy pin 8; "low when coprocessor is busy
pereq pin 9; "high during coprocessor operand transfers
pereqgate pin 12; "gated PEREQ to the processor
resetd pin 13; "reseth delayed by one CLK2 period
clk pin 14; "low during phase 1, high during phase 2
pipecyc pin 15; "low after pipelined bus cycles
buscyc pin 16: "low during active bus cycles
ient0 pin 17; "idle counter bit 0
ientl pin 18; "idle counter bit 1
ient2 pin 19; "idle counter bit 2
idle = [1,1]);
active = (0,1];
@” pipelined = [1,0];
. illegal = [(0,0];
inuse = [1,1,1);
idle2 = (0,1,1):
idle3 = [1,0,1);
idle4 = [1,1,0);
idleS = (0,0,1);
idle6 = [1,0,0):
idle7 = [0,1,0);
idles8 = (0,0,0);

"clk generator

equations resetd := reseth;
equations clk := !(clk # (!'reseth & resetd)):

. "bus cycle tracking

state_diagram (buscyc,pipecyc)

state idle:
if (reseth) then idle
else if ('ads & clk) then active
else idle;

state active:
if (reseth) then idle
else if (!ready & ads & clk) then idle

else if ('ready & 'ads & clk) then pipelined

else active;

state pipelined:
if (reseth) then idle
else if (clk) then active
else pipelined;

state illegal:
goto idle:;

»jdle cycle counter

state_diagram [ient0,icntl, icnt2)
"pus in use, or idle 1 clock

state inuse:

if (([buscyc,pipecyc)==idle) & ads &

else inuse;

state idle2: "2 clocks idle
if (([buscyc,pipecyc]==idle)
else if (clk) then inuse
else idle2;

state idle3: "3 clocks idle
if (([buscyc,pipecyc)==idle)
else if (clk) then inuse
else idle3:

state idled: "4 clocks idle
if (([buscyc,pipecyc)==idle)
else if (clk) then inuse
else idled:

state idleS: S clocks idle
if (([buscyc,pipecyc]==idle)
else if (clk) then inuse
else idleS;

state idleé6: "6 clocks idle
if (([buscyc,pipecyc)==idle)
else if (clk) then inuse
else idles§;

state idle7: "7 clocks idle
if (([buscyc,pipecycl==idle)
else if (clk) then inuse
else idle7:

state idle8: "g clocks idle
if (([buscyc,pipecycl==idle)
else if (clk) then inuse
else idle8;

mcoprocessor operand request

state_diagram {pereqgate]

state O: "no coprocessor request

ads

ads

ads

ads

ads

ads

ads

'hlda

'hlda

‘hlda

'hlda

'hlda

‘hlda

'hlda

thlda

clk)

clk)

clk)

clk)

clk)

clk)

clk)

clk)

if (pereq & ({icnt0,icntl,icnt2]==idle8) & ads &

else 0;

state 1: "coprocessor request

if (!'pereq & clk) then 0
else 1;

then

then

then

then

then

then

then

then

'hlda

idle2

idle3

idled

idles

idleé

idle?

idle8

idle8

& clk) then 1

"ready, pereq asserted

"synchronize phase
"ads asserted
"one wait-state

1
1:

-> [x,x,%x,x];
-> [x,x,x,x]);
-> (1,1,h,h):
-> [h,l,h'h]:
-> (l[l'hlh];
=> (h,1,h,h);
-> [1,1,h,h

([clkz,reseth,ads,:eady,hlda,busy,pefeq,oe] ->
[clk, pereggate, pipecyc,buscyc])

test_vectors

"1l clock idle
"2 clocks idle
"3 clocks idle
"4 clocks idle
"5 clocks idle
"6 clocks idle
"7 clocks idle
"8 clocks idle
"9 clocks idle, pereqgate asserted

S% S0 Sn fq 0q fq fa 40 Su sq B4 eq S a sa s o4 oo
XX aslenKanXan Xan Kan Kan X X o W g e e N

Loococoocooccocooco.o

- & a - - & a6 o~ - - " o - &N & o
ArdAAAAAAAAAAAAAALS OO

- T T T T S S O

LALASALACALALSACAHLA

-> [
-> [
-> [
-> [
-> [
-> [
-> {
=> [
-> {
=> [
-> [
=> [
-> [
->
-> (
-> [
-> [
-> [

- O R T S e

Loocooocoocoooo.o. g

- % & " &% & . - &% & = S & & & & & N
A AAAAAAAAAAAAAAAA

- T T T T I T

hhhhhhhhhhhhhhhhhh.mu

- . T I s

goocococoocococoonco

DO N N N NGO O
ArdAAAAAAAAAAAAAAAAD

LI I I I I S ey V1

ccccccccccccccccccn
St O Qe S S e Qo S G Gl s ot s e Gt G W Gt

end

C

PEREQ mask ed grochowski 8/24/87 intel co:poraiion
Equations for Module pereqgmod .

Device pall

Reduced Equations:
resetd := ! (!'reseth);
clk := !(clk # resetd & ‘reseth);

buscyc := ! (buscyc & clk & 'pipecyc & !reseth
'ads & buscyc & clk & !reseth
'buscyc & !clk & pipecyc & !reseth
'buscyc & pipecyc & ready & !reseth);

pipecyc := ! (buscyc & tclk & 'pipecyc & !reseth
4 'ads & 'buscyc & clk & pipecyc & !ready & !reseth);

ient0 := !(!clk & !icnt0
ads & buscyc & clk & 'hlda & tient2 & pipecyc
ads & buscyc & clk & 'hlda & icnt0 & icntl & pipecyc):

jentl := !(!'clk & !icntl
"~ § ads & buscyc & clk & !'hlda & tient0 & pipecyc
ads & buscyc & clk & !hlda & icntl & !icnt2 & pipecyc):

icnt2 := !('clk & !icnt2
ads & buscyc & 'hlda & !icnt0 & 'icnt2 & pipecyc
ads & buscyc & clk & 'hlda & tientl & pipecyc):

pereqgate := ! (!ads & !pereqgate
'clk & !pereqggate
hlda & !pereggate
icnt0 & !pereggate
icntl & !pereqgate
icnt2 & !pereggate
clk & !pereq):

W e e e e

R

]

