
INTEL CORPORATION
3065 Bowers Avenue
Santa Clara. California 95051
(408) 987-8080
TWX-910 338 0026 TELEX - 34-6372

j P * \

September 1, 1987

Dear 80386 Customer:
We have Identified 2 new errata Items on the 80386 microprocessor.

These errata are documented In the attached 80386 Stepping Information
Irllh ?;\eh.S&en,be\1' 1987* We *re *«»1t1vi to the Jffec?™nyerrata in the 386 may have on your business; we have thereby devised
and verified severa workarounds for these errata Items so that you may
have a choice of solution options. The workarounds are documented 1n
the Information Sheet and 1n the attached hardware design.

If you have questions not covered by the attached documentation,
please do not hesitate to contact your Intel Field Sales o7nwion'
Applications Engineer. Our field and headquarters applications staff
are fully trained on these Issues and are standing by to provide
w h a t e v e r h e l p y o u n e e d . p i w t i « «

Sincerely,

'SSL.

Dana B. Krelle
80386 Marketing Manager

pcjs.org

80386-B1
STEPPING INFORMATION

REVISION: SEPTEMBER 1, i987

Thia document contains specif ication changes errat- „

S p e c i fi c a t i o n c h a n g e s l i s t e d . ' M * * * * * * > i . . .
~ * i < i e d t o i n c o r p o 9 ^ . 1 ^ ^ ^ ™ ^ ' - t h . 8 0 3 8 6 d a t a s h e e t w i n > .
The errata items diarr^^ u

NOTES i

ssss sssr «& ~«- s »..« «,.t: ,3H
in D- aft«r reset: 03h

beloSf3 tiae' B1 stePPin* parts are ident ified with one of the marJta ahown

i i

i i
i i
i i
i i

Ae0386-I6
S40344
(FPO number)
(»)(c) i '85 86

11

i i

ff A80386-20ii S40362
fi (FPO number)i i (m)(C) i '85 /86

ZZ
REVISION HISTORY:

9/1/87 ̂ isas 2SR }J a--
Errata 20 and 21 added ***'"

0386
Intel Corporation Propriet

ary

pcjs.org

gp»c<flcation Changes

** .«-^if ie«tion changes l isted in this section apply to the latest version
TS%k! «0386 datasheet? version -003 dated November 1986. This datasheet is
HA of ill 198? SSoj^rocessor and Peripheral Handbook, order number
f$M43-004 Speerfication changer's, S, and I have already been incorporated
"JoJhis datasheet; the remaining items will be included « future versions
of the datasheet.

1. NT Bit and IOPL Bits in Real Mode
-hJ, „, b4t and IOPL bits of the FLAGS register can be set in Real Mode of
III 80386 ?he exact behavior of these bits in 80386 Real Mode was not
prlvJously documented. Note that in 80286 Real Mode, these bits can not
K le? (they always remain 0 in 80286 Real Mode).

2. Coprocessor Data Pointer Stored by FSAVE/FSTENV Instructions is Undefined
after Non-memory Instructions
*>.• intents of the operand address field resulting from a FSTENV or
JSlvJ are undefined if the preceding coprocessor arithmetic instruction
Sfi^t Lve ri^ory operand. The exact contents of the operand address
f i j ld° la th!s cIE 2. specif ied previously. This now conf irms that the
operand address field is undefined in that case.

3. Bit String Insert and Extract Instructions Removed
e«„,-o *h» B0386 has unique and powerful 64-bit Double Shift instructions,
fS Ja2 mS" i -b iJ .SJr ind ro ta te ins t ruc t ions , the "B i t S t r ing Inser t
ed -Sit fir ing Extract- instructions were removed. The insert/extract
™ie* instruct ions did not provide an addi t ional benef i t that fu l ly
5!stified inSudiS? them in 80386 silicon and all future compatible
l lSl i lZia A review concluded that the 80386 user obtains ful l

•Jetfo^nce in Hl 'str lng manipulat ions using other powerful instruct ionsaueh as 64-bit Double Shift, and other multi-bit shift/rotate
"sect ions These instruct ions support extremely fast manipulat ion of
g«nenl unaligned bit strings of any length, by processing them in32-bit chunks.

4. PC/AT Compatible Coprocessor Connection
Refer to the 80387 Stepping Information for a description of *>ow to
connect the 8OTTTto-EhTlO386 in a PC/AT-compatible «™«r- £ ■""J1connect cneowjo necessarv to use the PC/AT non-standard method of
amount o f ^g ic is necessary to^se i recommended 80386/80387

IZnl lSln0^S?ir iSlYl"ESoR#!h:ndUJERlQ pins connected di rect ly to the
80386), no special provisions are necessary.

5. Read Cycles Require Valid Data Bus Levels
The 80386 requires that all data bus pins be at a valid logicstate Oiigh
or low) at the end of each read cycle, when READY* is asserted. tb»
.««WStS S igned t o mee t t h i s r equ i r emen t . ™««£° " i e? ° N0TK0TE .
allow\ny data lines to be floating when the read cycle completes. NOTE.
The I/O read cycles just mentioned in the previous item, item 4, are free
from this requirement.

even if not ill of the 80386 byte.enables are asserted.

lines, which otherwise would be floating. Note w« dm cy
and 8-bit devices typically include several wait states, but always

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y 2

pcjs.org

calculate the effects of R-C time constants to ensure the pullups will
drive proper logic levels onto the bus within the time required.

6. I/O Permission Bitmap Must Reside Within TSS Offset OFFFFh

The 80386 requires that the entire I/O permission bitmap (including the
terminating byte of "OFFh"), which is part of an 80386 TSS, begin at an
offset no larger than ODFFFh. This guarantees the entire bitmap (up to l
kilobytes ♦ 1 terminator byte of OFFh) will reside at TSS offsets ofOFFFFh or less. Therefote, the pointer within a 38 6 TSS called
Bit_Map_Offset(15:0) must contain a value of ODFFFh or less under all
conditions, even when you intend the Bit Map Offset to point beyond the
l i m i t o f t h e T S S i t s e l f . ~ " "

7. BS16# Must Not Be Asserted During Pipelined Bus Cycles

In datasheet figures 5-16, 5-17, 5-19, and 5-22, the bus size 16 (BS16#)
input is shown as "don't care- during T2P and T21 in pipelined bus
cycles. This is incorrect. In these figures, BS16# should be high
during states T2P and T21. That is, once address pipelining has been
requested by asserting next address (NA#), BS16* must be negated for the
remainder of the current bus cycle.

Implications: Don't assert BS16# if NA# has already been sampled
asserted in the current bus cycle.

8. Double Page Faults Do Not Raise Double Fault Exception

If a second page fault occurs while the processor is attempting to enter
the service routine for the first, then the processor will invoke the
page fault (exception 14) handler a second time, rather than the doublefault (exception 8) handler. A subsequent fault, though, will lead to
shutdown.

Implications: Since double page faults normally do not occur, no
workaround is necessary.

9. Alignment of Maximum-Sized Segments
If a maximum-sized code segment (limit-FFFFFFFFH) does not start on
a double-word boundary, then a segment limit violation (exception 13)
will occur when the processor attempts to fetch the first instruction
in the segment. This happens because the prefetcher, which always
fetches double words, detects a match with the segment limit, which is
one less than the segment base due to wrap around.

Implications: If a maximum-sized segment is used, it should be dword
aligned (i.e. the two least significant bits of the segment base should
X/SftSii Dword alignment is sufficient to ensure correct operation oftne 8038 6. In addition, Intel recommends that maximum-sized segments be
page aligned (i.e. the lowest 12 bits of the segment base should be
zero) for compatibility with future processors.
Move from 16-bit Segment/System Register to 32-bit Destination
This clarifies how certain instructions (which imply a 16-bit operand
I A* m™ !TIi« ch Varc2" °P***n** "d operand sizes. These instructions«eKi!?0 r/naf'Sreg; STR r/ml6; SLDT r/ml6; and SMSW r/ml6. When a32-bit operand size is selected, and the destination is a register, the
16-bit source operand is copied into the lower 16 bits of the destination
re?i^6r: anl^e upper 16 bits of th« destination register are S"naC10n
iSwtr l! bits 2 thi6H^^OP4?fand 3if6 and a *•**"•* operand, only thelower 16 bits of the destination register are affected (the upper 16 bits
remain unchanged). With a memory operand, the source is writtK to
^??w? " k \6:M? ^antity' regardless of operand size. Thus, 32-bit
1 6 - 3 1 i f n e c e s f a J " " * t h 6 d e 3 t i n a t i o n « " - b i t s , a n d m a s k b i t s

I n t e l C o r p o r a t i o n P r o p r i e t a r y 3

10,

80386

pcjs.org

11. Coprocessor Signals BUSY*, ERROR* and PEREQ Recognized During Hold
In sect ion 5.5.1, the 80386 Data Sheet s tates that a l l inputs except
SlS! RESET, and NMI are ignored whi le HLDA is »ct ive. This l is t is
7 « ™ > l e t e I n a d d i t i o n t o t h e s e s i g n a l s , t h e 8 0 3 8 6 a l s o r e c o g n i z e s
BUS?*: ERROR* and PEREQ during the bus hold acknowledge state. This
makes sense since these pins are dedicated to coprocessor signaling,
which occurs independent of the processor's bus cycle.

r ^ - * ^ .

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y • 4

pcjs.org

FSTENV [BX]
MOV CX,[BX+8]
AND CX,0F000h
MOV SI, [BX+6]
MOV FS,CX
MOV CX,FS: [S I]
XCHG CH,CL
AND CX,7FFh
;CX now has the op
MOV SI,[BX+8]
AND SI,0F800h
OR SI,CX
MOV [BX+8],SI

E r ra ta

1. Opcode Field Incorrect for FSAVE and FSTENV

Problem: If an FSAVE or an FSTENV is executed in REAL mode or in VIRTUAL
8086 mode, the opcode field stored in memory is incorrect i f i t should
have re fer red to a coprocessor ins t ruct ion which t ransfers e i ther two
bytes or ten bytes from memory to the coprocessor. The instruct ion and
operand l i nea r add ress fie lds a re co r rec t l y s to red . No te tha t
coprocessor e r ro r -hand l ing rou t ines a re the on ly rou t ines poss ib ly
affected. Also note that the problem does not occur in PROTECTED mode
programs (since no opcode is saved by FSAVE or FSTENV in that case) •
Workaround: In REAL mode or in VIRTUAL 8086 mode, the instruction linear
address field can be used to read the opcode from memory. Note that the
two bytes fetched need to be swapped to yield the image that FSAVE and
FSTENV normal ly s tores. The fo l lowing is a poss ib le fixup sequence.

;save environment
;get l inear IP<19:16>
; t r e a t i t l i k e a s e l e c t o r
;ge t l inear IP<15:0>
/ e s t a b l i s h a d d r e s s a b i l i t y
;get raw opcode value
/swap bytes and
; mask out top bits

>de — store back if needed
/get opcode word
/mask out the bad
/mask in the good
/and store back

The opcode saved within the FSAVE FSTENV operand is in the following
fo rma t :

^ , 1 0 9 6 , (7 6 5 4 3 2 1 0 (' l o w e r t h r e e b i t s . m o d r / m b y t e
of ESC byte

2. FSAVE, FRESTOR, FSTENV and FLDENV Anomalies with Paging

Problem: If either of the last two bytes of an FSAVE or an FSTENV
operand are for any reason not wr i teable, or e i ther of the last two bytes
of an FRESTOR or FLDENV are for any reason not readable, the instruction
is no t res tar tab le . Th is p rob lem wi l l a r ise on ly in demand-paged
systems, or demand-segmented systems which increase segment size on
demand.

Workaround: A simple workaround is to wri te some value into the last two
bytes of the FSAVE/FSTENV operand just prior to the instruction, or read
the last two bytes prior to an FLDENV/FRESTOR. Another workaround is to
avoid having the operand of these instructions cross a page or segment
boundary. In paged systems, this can be accomplished by al igning these
operands on any 128-byte boundary.

3. Wraparound Coprocessor Operands

Problem: This can affect only s i tuat ions where a coprocessor operand
straddles the limit of a segment of maximum size (i.e. OFFFFh for a 16-
bit segment or OFFFFFFFFh for a 32-bit segment) or within 108 bytes of
maximum size, thus wrapping around to offset 0 of the segment. Since
a wraparound situation is very abnormal for a compiler or programner to
create , th is does not a f fec t a typ ica l sys tem.

Formally, the 80386 architecture does not permit an operand (coprocessor
operands included) to wrap around the end of a segment. If the user

80386 In te l Co rpo ra t i on P rop r i e t a r y

pcjs.org

4««ues such an instruction nonetheless in a Protected Mode system, and
the operand starts and ends in valid, present pages of a segment, BUT
lALna through an invalid or inaccessible page, the coprocessor may be put
i?2 indeSrminate state. In such cases, an FCLEX or FINIT instruction
nSeda to be executed before any o ther coprocessor ins t ruc t ion is issued. . ^
Workaround: In Real Mode, this is not a problem since protection is not
entbled. In Protected Mode, this problem is avoided simply by not
creating coprocessor operands which wrap around the end of the segment,
or by aligning the base of all segments on page boundaries.

I. IRET to TSS with Limit too Small
Problem: If an IRET performs a task switch to a TSS of proper descriptor
type but invalid <t©rsmall> limit, a Double rault (exception 8) will
rSult instead of a Invalid TSS Fault (exception 10) as should result,
furthermore if the Double Fault entry in the IDT is a trap gate, a
sn"5dtwTr«uits In a related topic? if the TSS Fault entry in the IDT
is invalid for any reason (e.g. bad AR byte), then instead of a Double
Fault (exception 8), a shutdown results.
uni-kjf.round- A working system, one that creates TSS segments of adequate
Sm toxoid the processor state (44 bytes for the TSS of a 16-bit task,
?04 bvles for the TSS of a 32-bit task), will not encounter any problems
nJre I working%y*tem should also provide a valid gate (interrupt,
trap,' or task gate) in the IDT for exception 8.

5.. Single-Stepping First Iteration of REP MOVS
p„hlm. If a REPeated MOVS instruction is executed when single-stepping
H cabled (TF - 1 in EFLAGS register), a single-step trap (exception 1
H ?2Sn everv two move steps, but should occur each move step. Also, if
a dat£ Sr!IJ2inTTirJitduring a odd iteration number of REP MOVS, theLS breakpoint trap is not taken until after the next even-numbered
iteration If the REP MOVS ends with an odd number of iterations, and
i i n ^ l e - s t e p p i n g o r d a t a b r e a k p o i n t s a r e e n a b l e d , t h e n a s i n g l e - s t e p t r a p ^
o ^ d a t a b t e t i c p o i n t S a p o n t h ^ i n e ! i t e r a t i o n w i l l p r o p e r l y o c c u r a f t e r 1
the final, odd-numbered iteration.
Workaround: When using the Trap Flag or data breakpoints with a debugger
utilitvTthis minor variation of REP MOVS must be accepted, unless an
elfort is mide to have the debugger emulate the REP MOVS rather than
actually execute i t .

6. Task Switch to Virtual 8086 Mode Doesn't Update Prefetch Limit
Bl.fthl.-. when a task switch to Virtual 8086 Mode is performed, the
prele^h l2X iTHoT fedlted to become OFFFFh, but instead remains atits previous value.

Workaround: Use the IRET instruction to transfer to Virtual 8086 Mode.SImShIi the preferred method for most instances, especial ly when
St LsSr ol dispatches a Virtual 8086 Mode program, because IRET can
cause the transition without a task switch.

7. Wrong Register Size for String Instructions in Mixed 16/32-bit
Addressing Systems
Problem: If certain string and loop instructions are followed by
instruct ions that e i ther :

1) use a different address size (that is, if either the stringinstruction or the following instruction uses an address size
p r e fi x) , o r*> h'ssspSj vr^^fs^sss .£ S.V5 "• ~« ^

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y

pcjs.org

ins t ruc t ions ,

then one or more of (E)CX, (E)SI, or (E)DI is not updated properly. The
size of the register (16 vs. 32) is taken from the following instruction
rather than from the string or loop instruction. This could result in
updating only the lower 16 bits of a 32-bit register, or in updating all
32 bits of a register being used as 16 bits. The instructions and
registers affected by this are listed below:

Ins t ruc t ion Register(s)
MOVS (E)DI
REP MOVS (E)SISTOS (E)DI
INS (E)DI
REP INS (E)CX

Workaround: No workaround is necessary if all code is 16-bit or if ail
code is 32-bit. The problem only occurs if instructions with different
address sizes are mixed together, or if a code segment of one size is
used with a stack segment of the other size.

In a system which mixes address sizes, add a NOP after each of the above
instructions and ensure that the NOP has the same address size as the
string/loop (i .e., i f the str ing/loop instruction includes an address
prefix, place the same address prefix before the NOP/ conversely, if the
string/loop instruction does not have an address prefix, do not olace a
p r e fi x b e f o r e t h e N O P) . . *

8. FAR Jump Located Near Page Boundary in Virtual 8086 Mode Paged Systems

Problem: In Virtual 8086 Mode, if a direct FAR jump (opcode EAh)
instruction is located at the end of a page (or within 16 bytes of the
end), and the next page is not cached in the TLB, the prefetcher limit is
not set by the FAR jump instruction to the -end" on the new code segment,
but rather is left at the -end- of the old code segment. This can illow
execution beyond the end of the new segment without triggering a segment
limit violation. Or it can result in a spurious GP fault if the old and
new segments overlap, and a prefetch occurs beyond the limit of the old
segment•
Note that the prefetch limit is checked on the linear address, not bv
c o m p a r i n g I P t o O F F F F h . — ' y
Workaround: All existing 8086 programs use only 16-bit addressing, and
thus will not execute code at offsets greater than OFFFFh from the code
segment base. Thus the lack of detection of walking off the end of a
code segment should not impact working 8086 programs.
A workaround to the spurious GP fault, if it occurs, is to simply IRET
back to the faulting instruction, since the IRET will correctly set the
prefetch l imit . I f the fault handler has control of the singl2-"ep
function, a very simple workaround is to attempt to single-step the
cJei r SL1^0^011- 11 ^ s ing le-s tep succeeded, thS handler couldclear the fault, turn off single-stepping, and IRET. If a GP fault
occurred attempting to single-step the instruction, a "real- GP fault is
uiio cause.
If the fault handler cannot access the single-stepping function, it stil l
f o r S S i f ^ T / F ? 1 ^ f ? U l " W h i c h * * " 2 . e m u l ? ? e d % J ^ e S ; t i r 1 s tfor example, I/O instructions that need to be emulated, CLI/STI
J2™?tl2na-Khal; m?St ** emulated' *tc- " none of these faults are
fnS ??i!? '™ £"£* hancLLer can assume this errata caused the G* faultand simply iret back to the instruction.

9. Page Fault Error Code on Stack Not Reliable

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y 7

pcjs.org

ow^lem- When a Page Fault (exception 14) occurs, the 3 defined bits in
the error code may be unreliable if a certain sequence of prefetch is
happening at the same time.
w« , - i tM round - A l t hough t he page f au l t e r ro r code pushed on to t he page - !
*orS 2SSi.r>l stack can be unreliable, as described, the pase fault
?!«£, l lfrl ls stored in register CR2 is always correct. The page fault
T^TXr^iSiuTf refH to the page fault linear address in CR2 to access
?n2^rrJspSiding page tablewtry and thereby determine whether the page
fJllfwH dSe" tS a page -not present" condition, or to a usage violation.

10. Certain I/O Addresses Incorrect when Paging is Enabled
.,fthlM1. when paging is enabled, accessing I/O addresses in the range
OOOOlOOOh-OOOOFFFFh <4K through 64K-1) or accessing coprocessor ports
«/0 addresses 800000F8h-800000FFh> as a result of executing "processor
Ixodes can generate incorrect I/O addresses if paging is enabled and
?ht^rresp^di!!g linear memory address is marked "present- and "dirty.
. _*v«-««« whan oaaino has been enabled and is then turned off, paging
SnSSlon'eoSanSn S S"u7?or «»ry or I/O cycl« (I/O .. d..crib«l

SET? LAX-tftt £?r.'AZlA?A,U%i WTicA
system), then I/O is no problem.

i ,. „-.h »nrt t/o ports exist in the range OOOOlOOOh-OOOOFFFFh,
ineHi?Lr hi" tJfme^rTSg" at t iose l inear addresses "fked "not
p r « e ^ " " o ^ i d h a v t n l ^ h S s I p a g e s t a b l e • " £ • • J j f g . g ^ J ™ 'pteaoi.w » those pages mapped such that bits 12-15 or tne
°f *? ? !2£«a eo^Il bi?s 12-15 of the linear address. Alternatively,
reassign t£"o^sln'tne range OOOOlOOOh-OOOOFFFFh to below
O O O O l O O O h . ^ * %

page's physical address is a 1.

CM The ?LB can be flushed, you recall, by writing a Page Table
Directory base address to register CR3.

11. Wrong ECX Update by REP INS
P r o b l e m : T h e E C X r e g i s t e r (o r C X i n c a s e ^ ^ ^ g i ^ k 1 " *
upda ted p roper l y i n t ^e case o f a i ^ INS ins t ruc t ^ ea r l y -s ta r ti n s t r u c t i o n w i t h a n y R E P e a t P ^ ^ ^ J ^ i ^ ^ t n s t r u J t i o n s) . A f t e r a n y

(or DI) is updated properly.

than being ADDed into ECX.

12. NMI Doesn't Always Bring Chip Out of Shutdown in Obscure Condition with
Paging Enabled
Prob lem: I f pag ing i s enab led , and i f t he IDT ga te fo r the Doub le Fau l t ^

g 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y 8

pcjs.org

handler (the gate for exception 8) points to the null descriptor slot,
descriptor 0, in the GDT (this would-be very a strange way to set up a
system), and a TLB miss occurs when accessing the null descriptor slot,
the chip enters shutdown as it should in this case. In this specific
case however, an incoming NMI will not be able to bring the 386 out of

f " ' v s h u t d o w n . I n t h i s s p e c i fi c c a s e , o n l y r e s e t w i l l b r i n g t h e 3 8 6 o u t o fshutdown.
Workaround: Ensure that the IDT gate for the Double Fault Handler has
a non-null selectors for CS, and that SS of the destination level is also
n o n - n u l l . .

13. HOLD Input During Protected Mode Interlevel IRET when Paging is Enabled
Problem: Under specific situations involving paging and the page
privilege bits, the HOLD input, and a RET or IRET instruction performing
an inter-level return to level 3, a problem can develop. These
situations can be avoided by the workarounds given.
The first situation, when the inner level stack (levels 0, 1, and 2)
is not dword aligned (or not word aligned in the case of a 16-bit
(I)RET), requires that several conditions occur simultaneously:

1) Paging must be enabled, and the page table and directory entries
for the inner level stacks must be marked as supervisor access only.

2) The software must execute an inter-level RET or IRET to a
Protected Mode program at privilege level 3. An inter-level IRET to
Virtual 8086 Mode does not exhibit this problem. An inter-level RET
or IRET to level 1 or 2 does not exhibit this problem.

3) The inner level stack must be unaligned to a dword boundary
(word boundary for a 16-bit (I)RET).

When the first situation occurs, a page fault (exception 14) occurs
spuriously, indicating a page level protection violation during a "user-level read of the inner level stack.
The second situation, whether or not the inner level stack is dword
aligned (or word aligned in the case of a 16-bit (I)RET), also requiresthat several conditions occur simultaneously:

1) Paging must be enabled, and the page table and directory entries
for the inner level stacks must be marked as supervisor access only.

2) The software must execute an inter-level RET or IRET to a
Protected Mode program at privilege level 3. An inter-level IRET to
Virtual 8086 Mode does not exhibit this problem. An inter-level RET
or IRET to level 1 or 2 does not exhibit this problem.

3) The bus HOLD input must be asserted during the read cycle which
pops ESP (or SP) off the inner stack as a result of a RET or IRET
ins t ruc t i on .

When the second situation occurs, no exception is generated, but the
processor will drive an incorrect physical address during the read cyclein which SS is popped from the inner level stack.

Workarounds: A software workaround to both situations is to mark all
pages which contain the inner level stacks as user readeible. This
prevents either the first or second situation from occurring. The
segmentation system can be used to prevent user access to the linearaddresses containing the inner-level stacks.
A workaround if not using the HOLD input is merely to keep the inner-
level stacks aligned.

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y 9

pcjs.org

occursA Hardware workaround if using the HOLD input but not using the
7n7tware "workaround above is the fo l lowing: S ince the prob lem ».
dur ing the fi rs t cyc le a f te r a locked cyc le to read the CS descr ip to r, a
hardware workaround is to prevent a HOLD request from hitting the
processor during bus cycle fol lowing a LOCKed cycle. This can be
accomplished with a latch that delays the LOCK* signal through a
flip-flop clocked by READY* to gate a HOLD request going into the chip.
Th is w i l l p revent a ho ld request f rom get t ing to the 80386 unt i l a f te r
the complet ion of the first cyc le af ter a LOCKed cyc le. For the hardware
workaround to be suffic ient , a l l s tacks must be proper ly a l igned, and
BS16* must be t ied inact ive.

14. Protected Mode LSL Instruction Should not be Followed by PUSH/POP

Prob lem: Th is i t em per ta ins on ly to Pro tec ted Mode. I f t he Pro tec ted
Mode LSL instruct ion (Load Segment L imi t instruct ion, executable only in
Pro tec ted Mode) is immedia te ly fo l lowed by cer ta in ins t ruc t ions tha t
perform a stack operation, such as PUSH or POP (see exact list below),
the value of the (E)SP register may be incorrect af ter the stack
o p e r a t i o n . N o t e t h a t s t a c k o p e r a t i o n s r e s u l t i n g f r o m i n t e r r u p t s o r
except ions fo l lowing LSL do update (E)SP correct ly.
workaround: Do not immediately fo l low the Protected Mode LSL instruct ion
w i t h any o f t he f o l l ow ing s tack ope ra t i on i ns t r uc t i ons : IRET (i n t r a - .
task), POPA, POPF, POP (mem, reg, seg-reg), RET (intrasegment or
i n te rsegmen t) , CALL (d i rec t i n t rasegment , d i rec t i n te rsegmen t , i nd i rec t
intrasegment via reg), ENTER, PUSHA, PUSHF, PUSH (mem, reg, seg-reg,
immed) . Other ins t ruc t ions tha t opera te on the s tack (e .g . CALL ind i rec t
via memory, and LEAVE) can be used safely after the Protected Mode LSL.
Note that even i f a forb idden inst ruct ion immediate ly fo l lows LSL, (E)SP
may st i l l be updated correct ly, s ince th is problem is data-dependent and
only occurs i f the LSL operat ion succeeded (i .e. i f LSL set the ZF flag) .

15. LSL/LAR./VERJR/VERW Instructions Malfunction with Null Selector

P r o b l e m : T h e P r o t e c t e d M o d e i n s t r u c t i o n s L S L , L A R , V E R R o r V E RW e x e c u t e d ^ \
w i th a nu l l se lec to r (i . e . b i t s 15 th rough 2 o f the se lec to r se t to ze ro)
as the operand wil l operate on the descriptor at entry 0 of the GDT
ins tead o f uncond i t i ona l l y c lea r ing the ZF flag .

w o r k a r o u n d : T h e " n u l l d e s c r i p t o r - (i . e . t h e d e s c r i p t o r a t e n t r y 0 o f t h e
G D T) s h o u l d b e i n i t i a l i z e d t o a l l z e r o s . I f t h e " n u l l d e s c r i p t o r " i s
i n i t i a l i zed to a l l ze ros (i . e . an i nva l i d va lue) , t he access made by
t h e s e i n s t r u c t i o n s t o t h e " n u l l d e s c r i p t o r - w i l l f a i l (s i n c e t h e s e
i n s t r u c t i o n s o n l y o p e r a t e o n v a l i d d e s c r i p t o r s) . T h e f a i l u r e w i l l b e
reported with ZF cleared, which is the desired behavior when the operand
is a nu l l se lec to r. No te tha t many sys tems a l ready have the nu l l
desc r i p to r - i n t he GDT i n i t i a l i zed t o ze ros , as i s des i red f o r t h i s
workaround.

16. -Not Present" LDT in VM86 Task Raises Wrong Exception

Problem: A task switch to a VM86 task that has a "not present" LDT
descr ip tor wi l l cause a Segment Not Present fau l t (except ion 11) rather
than an Invalid TSS fault (exception 10) .

Workaround: The simplest workaround is to use a NULL selector for
the LDT in a VMS 6 task, since the LDT is not used when executing in
Vi r tua l 86 mode. However, i f an in te r rup t o r except ion occurs , tne
processor wi l l swi tch out of Vi r tual 86 mode, into protected mode to
hand le t he i n te r rup t , w i t hou t sw i t ch ing t asks . Thus , t he ope ra t i ng
system should be structured so that a l l Interrupt and Trap gates
active when executing a VMS6 task reference segments in the GDT.

If an LDT must be supplied for a task that executes in Virtual 86 mode,
there are several easy workarounds. One is to ensure that LDT segments
a r e n e v e r m a r k e d - n o t p r e s e n t " i n t h e i r s e g m e n t d e s c r i p t o r s . P a g i n g i s ^

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y 10

pcjs.org

jsf$te\

^fptes

not affected by this errata. LDT segments can be paged out and marked
-not present- in their page descriptors in systems which use paging.
If the operating system must mark the LDT segment descriptor -not
present", the "not present- (exception 11) handler must be able to
handle the case of a -not present- LDT during a task switch. The -not
present- exception is reported with the LDT selector as the error code
and with the VM bit set to 1 in the EFLAGS image of the caller. Since
a VM86 task cannot normally raise a -not present- fault, the -not
present- exception handler can detect this case by checking if the stored
VM bit is set. If so, the fault can be redirected to the TSS Fault
handler.

17. Coprocessor Instructions Crossing Page/Segment Boundaries
Problem: If the first byte of a coprocessor (ESC) instruction is
located on the last byte of a page or segment, and the second byte is
located on a page or segment which would create a fault, then the
processor will hang when it tries to signal the fault. The processor
remains stopped until an interrupt, NMI, or RESET occurs. This errata
applies only to coprocessor instructions in systems which use virtual
memory.
Workaround: In virtual memory systems, the time-slice or watchdog timer
provides an easy workaround, since a timer interrupt will always cause
the processor to begin interrupt processing. The timer routine should
test the following conditions to determine if this errata was
encountered.

1) The saved CS:EIP must point within 8 bytes of the end of a page
2) The last byte within the page must contain an ESC opcode.
3) All bytes between the saved CS:EIP and the ESC opcode must contain

valid prefix opcodes (segment override 26h, 2Eh, 36h, 3Eh, 64h, 65h,
address size override 67h, operand size override 66h).

4) The next page is not present, or not accessible.
If all four conditions are true, then the timer routine can assume this
errata was encountered, and signal a page fault, which will clear
the condition. This workaround should be placed in the Operating System,
s o t h a t a p p l i c a t i o n s p r o g r a m s a r e u n a f f e c t e d . y '

18. Breakpoints Malfunction after Reading CR3, TR6, or TR7

Problem: Breakpoints associated with the four debug registers (DRO-3)
will not work correctly after a MOV from CR3, TR6 or TR7 is executed
The contents of DRO-3 are unaffected; however, spurious breakpoints may
result. This condition persists until the processor executes the next
jump instruction. This errata does not affect the breakpoint instruction
(opcode OCCh) or the single-step trap (TF, bit 8 in EFLAGs) . n"ruc"on
Workaround: Breakpoints will work correctly if the following sequence
i s a l w a y s u s e d t o r e a d C R 3 , T R 6 , o r T R 7 . ^ H « « n w t j

1) Disable breakpoints by clearing G0-G3, L0-L3 in DR7
2) MOV from CR3, TR6, or TR7 to the destination
3) Jump to the next instruction
4) Re-enable breakpoints

19. Return Address Incorrect for Segment Limit fault during FNINIT

Problem: In protected mode, if the segment limit is set so that the
last byte of an FNINIT opcode falls on the last byte of a segment, then
t h Z Z Z Z u t Z 9 0 * ^ 11 * n c L L « t e * * * * * * * * " - i t f a u l t (e x c e p t i o TO N X T
linJ Sr~?5SM (Sre? ?? the stack) pointing to the FNINIT opcode.
f 12 ! th#wFM^XI ?pcode falls *nti«ly "ithin the segment, the returnaddress should point to the next instruction.

80386 I n t e l C o r p o r a t i o n P r o p r i e t a r y n

pcjs.org

j t „ ,v. tema which restart- instruct ions on segment l imitWorkaround: In s* '*^ "£:" should-test for an FNINIT instruct ion at
f a u l t s , ^ V- c ^ n t a n l S j ^ r S S r e t u r n a d d r e s s a c c o r d i n g l y,
the end of *8ef^n**™tJon handler can leave the return address
A l t e r n a t i v e l y , t h e • " ^ " " J J " t 0 ^ e x e c u t e d a s e c o n d t i m e . I n s y s t e m s ^
r i S l ^ a m n ^ o r ? t n e Z f S . s e g m e n t i n d i c a t e s a n o n r e c o v e r a b l e * ^
s^ware* error,9no workaround is necessary.
VERR/VERW/LAR/LSL Instructions Malfunction with Bad Selector

j ~s . OTPtt VERW, LAR# or LSL instruction is not
Problem: If the operand of * ^Jiu™ceidlng the GDT/LDT limit or a
accessible (due to the "^°f0££J *"£ VERR/VERW/LAR/LSL (in the

i n t e r r u p t . I f t h e P r o c e s s o r » " I U " . U I I S s l n i n t e r r u p t p r o c e s s i n g ,
t imer i n te r rup t » " *» " • r rSo t h ind ie r (» i« IR«> . the p rocessor « i l l

%£,?32^"&£VS££& «oUo.ln. . .MVM/Ltt/UL.
I f . t i « . r i n t e r r u p t 1 , n o t . . . i l ^ J ; " ^ ^ ^ " ^ ^ n n ' ^ i r
e . c h V W R / V E R H / L A R / L S L I n s t r u c t i o n « l t n • O T « • > u # t b ^ .

i S S S S ^ i l T S J : S . 2 1 V S t n S r ^ - j J t r u c S o n b e f o r e e x e c u t i n g
the VERR/VERW/LAR/LSL.

I Coprocessor Malfunctions with Paging Enabled
Prob lem: Under ce r ta in cond i t i ons o f memory ^ -^^ / ^ / ^ fe tch
r e q u e s t s , a P W l ^ ^ f f J , , ? ? l ^ ^ * * * * ^ c l m * f e t h 6 * *■ * ^
u n i t (i n t e r n a l t o t h e 8 « 8 6 > r e q u e s " , m e m o r y l m (b y 1
time that the coprocessor requests *a ^JJive out an incorrect address
.sorting PEREQ), then £« P^J" SLol. Specifically, the processor
when transferring data fr0* "« *Xoi?CH (with A31 low), rather than
will drive an I/O address of%0000°0«^f {w*;° ^Un may be left in an
SOOOOofcH (with A31 high) . *JaJa«SSM on!y "en S£ 80386 is executing
i T t l l ^ T ^ l l l n ^ i ^ w h i l e p a g i n g i s e n a b l e d .
w o r k a r o u n d : S e v e r a l w o r k a r o u n d s ^ r e ^ ^ l ^ J S S ^ S Z Z t .
hardware-onlZ workaround is to add a •"*• "hiIe the prefetcher may be
She PEREQ s^gn»i from hitting the P"«"'°= ™pressor's bus activity,
aclive. The state machine »h?uld.^"f *j! ^SSle HLDA is negated),
If the bus is idle for more than ?^t|n°^ue is Lll and allow the
the state machine can »«^ *h«|r;§S86. ^Xerwise, 80386 PEREQ should
80387 PEREQ to be passed ^.^iSntitioA of this workaround is provided

executing any subsequent instructions. .
Another hardware-on ly workaround J^^sJor^r forL^I /O cyc le
exists at address 000000FCH. If the proce »^he 1/0 cycle is
to this address, an external d««^r?tJ J£e coprocessor accordingly.
In tended fo r the coprocessor^and enab le the cop i f ^^^a
Note that decoding, the I/O address will 5"*£™ided which asserts the
i n a B - PA L . T h u s , • " " J " ^ . ^ * t o a l l o w s u f f i c i e n t t i m e
80387 ADS# pin one clock after «««» «"
to decode.

u ^
Intel Corporation Proprietary80386

pcjs.org

An OS/hardware workaround is to locate.the Page Directory Table at
address 80001000H or higher (i.e. CR3 bit 31 is set). If memory is not^ tillable at address 80001000H, the hardware should be modified to

f^ tmorf A31 Shl^decoding memory addresses (A31 should still be used asV a coprocessor select). This may be accomplished by disconnecting the
system's A31 from the processor, and connecting it to A30.
An OS-only workaround is to set the EM bit in CRO, forcing the
processor to trap on every ESC instimction. The OS can then execute.the
ESC instruction in a controlled environment. Specifically, within the
exception 7 handler, the ESC inatiruction should be followed by a JMP.
Both instructions should be aligned so the last byte of the ESC
instruction, and all bytes of the JMP reside within the same doubleword.
Aligning the instxructions in this manner guarantees that the processor
will have prefetched the entire JMP inatiruction before executing the ESC.
By stopping the prefetcher, the JMP prevents this errata from occurring.
Before implementing this workaround, the OS must first check the 80386
revision identifier (in DX after RESET) to detexnaine if a workaround is
necessa.ry. Note that using this workaround will have significant
performance impact on numerics software. Care should be taken to ensurethat any OS workaround also satisfies errata 10.

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y 1 3

pcjs.org

Design Notes

1. Read Cycles Require Valid Data Bus Levels
P l e a s e r e f e r t o S p e c i fi c a t i o n C h a n g e 5 f o r . i m p o r t a n t n e w s - o n p r o p e r ^ / ^
system design for 386, read cycles.

2. Use of ESP as a Base Register With CAIX, PUSH, and POP .Inst-ructions
This clarifies how ESP behaves with instructions that implicitly
reference the stack and explicitly reference another location in memory
using ESP as a base register.

4.

E x p l i c i t M e m o r y E ? ^ v a ^ U wReference us«
the ESP value.i n s t r u c t i o n R e f e r e n c e u s e s u s e d a s b a s e

C A U , - i n d i r e c t - t h r u - m e u . ^ Z S S Z ° " " *decrementing

P U S H - f r o m - m e m o r y d e c r e i e n t i n gb e f o r e o l d E S P

P O P - t o - m e m o r y i n c r e m e n t i n ga f t e r n e w E S P

This is consistent in that the CALL-indirect-thru-memory and the PUSH-
from-memory both use the same ESP value.
Furthermore, the relation between PUSH-from-masory and POP-to-memory is
such that it allows the instruction sequence:

PUSH [ESP+n]

to have t£e de"rSe property of both instructions referencing the same
m e m o r y l o c a t i o n .)
Use of Code Breaks to Debug 86/286 Operating Systems

T h e R F b i t i n t h e E F L A G S " ^ e ^ r ^ e r S J o ' s ^ o d e ^ r e a t ^ n t s

cases, and code breakpoints work J1™ ">°nfa;j ;witches. In 16-bit
e rv i ro^n?s?n to^are Seougger f shSS ' -S .2 C^ (s ing le by te INT 3
ISItrSction) to place software breakpoints m code.
Use of ESP in 16-bit Code with 32-bit Interrupt Handlers
«v » *?-hit IRET is used to return to another privilege level, andWhen a 32-bit iret is useo » |B_i). while the new level uses a 64k
the old level uses a 4G stack (B-1), wni« n« updated. The upper word
stack (B-0), then only the lower JJ?™ i«4it^od«, as well as pure
remains unchanged. This is fine *°« £»*•" handlers are present, 16-bit

^ ^ r n ^ s ' n ' I i r ^ l n i l ^ i t ' t S S . ^ s t V p r. r i , .

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y

pcjs.org

Intel Intel Corporation Proprietary

A Hardware Workaround for the 80386 Paging/Coprocessor Errata

This document describes a simple hardware workaround for the 80386 Paging/Coprocessor
errata. The workaround is software transparent, creates no timing problems, and is suitable for
daughtercard construction. It does not affect processor performance on non-numeric programs,
but will have a slight performance impact on numeric programs. The circuit we're about to
describe has been built and tested in several 80386 machines, fa always, complete PAL codes
and schematics are included. For a description of the errata, consult the 80386 Stepping
Informaiion, dated 9-1-87, errata number 21.
The workaround consists of adding a PAL to control the P.EREQ (Erocessor Extension REQuest)
signal received by the 80386. The basic idea is to prevent a PEREQ from hitting the processor at
a time when a prefetch request may be pending internally. Specifically, the P.AL contains a state
miichine to monitor 80386 bus activity, a counter to keep track of idle cycles, and a state machine
to mask PEREQ if necessary.

The operation of the circuit is as follows. During active bus cycles, the counter is cleared. When
an idle cycle occurs (with HLDA negated) the counter is incremented. When 8 idle cycles have
been counted, the ciiruit assumes the prefetch queue is full and allows a PJEREQ to pass through
to the 80386. Otherwise, 80386 PEREQ is forced ine*ctive. Thus, a coprocessor request can only
be honored after the prefetcher has stopped. By monitoring the processor's bus cycles, the
circuit functions properly for all combinations of HOLD requests and memory wait-states. In
applying this rircuit, one should allow at leatf 8 clocks between consecutive HOLD requests, in
order to let ESC instructions complete. .Also note that this method of detexmirung wlien the
prefetch queue is full works only during ESC instructions with memory operands, since the
processor must wait for the ESC to finish before executing any subsequent instructions.

-sip**,.

pcjs.org

OD

— •• CO
« r > 3 ^ » - >
< I © h - C U U O
c u o h - - j u t a ucq (o o a « a

o « >s« O O 03
\ \ - J 9r o x »

u

/ ^ * % v

^ — to cu h- co >
c n o 3 ^ w p 5
« a p - - j c o « < r
t i « o u u
c u ® » - * a
<x e co

o u < x >^ \ ca co
\ c a j 3r x a

OD Xcn u
9 O
CD CO

OD
fN.
CUI
OD

- J • -
O *oc a>
X O
O Xa ooo cc
lii ID
U 0

^

pcjs.org

module pereqmod;
fl a g ' - r 3 ' ;
title 'PEREQ mask e d g r o c h o w s k i 8 / 2 4 / 8 7 i n t e l c o r p o r a t i o n '

"This PAL accepts status information from the 8038 6 and uses it
"to track bus cycles. This PAL generates a gated PEREQ output, which
" is act ivated only when the prefetch queue is fu l l .

p a l l d e v i c e ' p l 6 r 8 ' ;
h, 1, c,x - 1,0, .C, .X. ;

gnd pin 10;vcc pin 20;
oe pin 11;

c lk2 p in 1 ;
reseth p in 2;
ads pin 3;
ready pin 4;
mio pin 5;
dc pin 6;
hlda pin 7;
busy pin 8;
pereq pin 9;

pereqgate pin 12;
resetd p in 13;
elk pin 14;
pipecyc pin 15;
buscyc pin 16;icntO pin 17;
i c n t l p i n 1 8 ;
icnt2 p in 19;

"80386 CLK2
"h igh dur ing reset
"low to begin bus cycles
"low to end bus cycles
"high dur ing memory cycles, low for i /o
"high for data, low for code
"high during hold acknowledge
"low when coprocessor is busy
"high dur ing coprocessor operand transfers

"gated PEREQ to the processor
"reseth delayed by one CLK2 period
"low during phase 1, high during phase 2
" low af ter p ipe l ined bus cyc les
" low dur ing act ive bus cycles
" i d l e coun te r b i t 0
" i d l e coun te r b i t 1
" i d l e c o u n t e r b i t 2

i d l e - [1 , 1]
a c t i v e - [0 , 1]
p i p e l i n e d - [1 / 0]
i l l e g a l - [0 , 0]

i nuse - [1 , 1 , 1] ;
i d l e 2 - [0 , 1 , 1]
i d l e 3 - [1 , 0 , 1] ,
i d l e 4 - [1 , 1 , 0]
i d l e S - [0 , 0 , 1] ,
i d l e 6 - [1 , 0 , 0] ,
i d l e 7 - [0 , 1 , 0] ,
i d l e 8 - [0 , 0 , 0] ,

"e lk genera to r

equa t ions rese td : - rese th ;
equa t i ons e l k : - ! (e l k # (! r ese th 6 rese td)) ;

"bus cyc le t rack ing

atate_diagram [buscyc,p ipecyc]
s t a t e ~ i d l e :

i f (r e s e t h) t h e n i d l e
e l se i f (l ads & e l k) t hen ac t i ve
e l s e i d l e ;

s t a t e a c t i v e :
i f (r ese th) t hen - i d l e
else i f (. ' ready & ads 6 elk) then id le

pcjs.org

else if (!ready 6 lads & elk) then pipelined
else act ive;

state pipelined:
i f (r e s e t h) t h e n i d l e . ^ %
e l s e i f (e l k) t h e n a c t i v e ?
else pipel ined;

s ta te i l l ega l :
goto idle;

"idle cycle counter

state d iagram [icnt0, icnt l , icnt2]«r* r * inuse- "bus in use, or id le 1 c lock
i f u "useyc ,P i^cyc] - i i le) 4 ads * Ih lda 4 e lk) then id le2
else inuse;

" " I f ' n ^ u s c y c ^ i p e c j c] - ^) 4 a d s 4 t h l d a * e l k , t h e n i d l e 3
else if (elk) then inuse
else idle2;

■" V m 2 » . e y c , ; i p 2 ^] - i S : > * a d s 4 t h l d a * e l k) t h e n i d l e 4
else if (elk) then inuse
else idle3;

• t a t i f ^ T i U . c y c . ; U J c i l - i S :) 4 a d s a ! h l d a * e l k) t h e n i d l e S
else if (elk) then inuse
else idle4;

" " t ^ n i s c y c . p l p ^ U S : , < . d s . , h l d . « . 1 » t n e n i d l e .
e l s e i f (e l k) t h e n i n u s e ^
else idleS;

" " t f ' m b u s e y e ^ i p e ^ c ? - - ! ^) 4 a d s 4 ! h l d a 4 e l k) t h e n i d l e 7
else if (elk) then inuse
else idle6;

8tateifiu!buseyc,;ipecrc]--1idU) 4 ads 4 Ihlda 4 elk, then idleS
else if (elk) then inuse
else idle7;

" " I f l a b u s e y e ^ i p e c y e ^ - i S) « a d s 4 i h l d a 4 e l k) t h e n i d l e 8
else if (elk) then inuse
else idle8;

"coprocessor operand request
state diagram [pereqgate]
st"i?ip.r.q. .i^anssrassffiui)«-.« i«*••««-»»

else 0;

s t a t e 1 : " c o p r o c e s s o r r e q u e s t
if (!pereq 4 elk) then 0
else 1;

pcjs.org

t es t_vec to rs ([c l k2 , rese th ,ads , ready,h lda ,busy,pe req ,oe] ->
[e lk ,pereqgate ,p ipecyc ,buscyc])

j f ^ ^ S

[c , h , h , h , l , h , l , l
[c , h , h , h , l , h , l , l
[c , l , h , h , l , h , 1 , 1
[c , l , h , h , l , h , l , l
[c , l , h , h , l , h , l , l
[c , l , h , h , l , h , l , l
[c , l , h , h , l , h , l , l

[c , l , h , h ,
[c , l , h , h ,
[c , l , h , h ,
[c , l , h , h ,
I c . l f h # h f
[c , l , h , h ,
[c , l , h , h ,
[c . l . h . h .
[c , l , h , h ,
[c , l , h , h ,
[c , l , h , h ,
[c . l . h . h ,
[c , l , h , h ,
[c , l , h , h ,
[c , l , h , h ,
[c , l , h , h ,
[c , l , h , h ,
[c , l , h , h ,

end pereqmod;

l , h , h , l
l , h , h , l
l , h , h , l
l , h , h , l
l , h , h , l
l , h , h , l
l , h , h , l
l , h , h , l
l , h , h , l
l , h , h , l
l , h , h , l
l , h , h , l
l , h , h , l
l , h , h , l
l , h , h , l
l , h , h , l
l , h , h , l
l , h , h , l

- >
->
->
->
->
->
- >

- >
- >
- >
- >
- >
- >

- >
- >
->
- >
- >
- >
- >
- >
- >
- >
- >
- >
->
->
->
- >
- >
- >

X, X, X, X
X, X, X, X
i , i , h , h
h , l , h , h
1 , 1 , h , h
h , l , h , h
1,1, h,h

h , l , h , h
1,1, h,l.
h , l , h , l
l , l , h , i :
h , l , h , l
1 , 1 , h , h

h,
1,
h,
1,
h,
1,
h,
1,
h,
1,
h,
1,
h,
1,
h,
1,
h,
1,

l , h , h
l , h , h
l , h , h
l , h , h
l , h , h
i , h , h :
l , h , h
l , h , h
l , h , h
l , h , h
l , h , h
l , h , h
l , h , h
l , h , h
l , h , h
h , h , h
h , h , h
h , h , h

"synchronize phase

"ads asserted

"one wa i t - s ta te

"ready, pereq asserted

"1 c lock i d l e

"2 c locks i d le

"3 c locks i d le

"4 c locks i d le

"5 c locks i d le

"6 c locks i d le

"7 c locks i d le

"8 c locks i d le

"9 c locks id le , pereqgate asser ted

pcjs.org

PEREQ mask ed grochowski 8/24/87 Intel corporation
Equations for Module pereqmod
Device pall

Reduced Equations:
resetd :- ! (!reseth);

elk :• !(elk # resetd 4 !reseth);
buscyc :- ! (buscyc 4 elk 4 Jpipecyc 4 .'reseth

'ads 4 buscyc 4 elk 4 !reseth
!buscyc 4 !clk 4 pipecyc 4 !reseth
Ibuscye 4 pipecyc 4 ready 4 !reseth);

oiDecvc •- '(buscyc 4 !clk 4 Jpipecyc 4 .resethpipecyc . -^^ tbuscyc 4 e lk 4 p ipecyc 4 ! ready 4 ! reseth) ;

ien tO : - JC^Vbi tc^a e lk 4 fh lda 4 ! i cn t2 4 p ipecyc
! JS 4 buscyc 4 elk 4 Ihlda 4 ientO 4 icntl 4 pipecyc);

i c n t l :■ ! (! c l k 4 ! i c n t l . . _ m .
ads 4 buscyc 4 elk 4 Ihlda 4 licntO 4 pipecyc
Idl 4 buscyc 4 elk 4 Ihlda 4 icntl 4 !icnt2 4 pipecyc)

ient2 :- i<iSj*b^24 !hlda < !icntO 4 !ient2 4 pipecyc
ads 4 buscyc 4 elk 4 !hlda 4 !icntl 4 pipecyc);

Ŝ

pereqgate :- !(!ads 4 !pereqgate# !clk 4 !pereqgate
hlda 4 !pereqgate
ientO 4 !pereqgate
icntl 4 .'pereqgate
icnt2 4 !pereqgate
elk 4 Ipereq);

S ^ $ % L

pcjs.org

