
80386-B1
STEPPING INFORMATION

REVISION: APRIL 30, 1987

This document contains specification changes, errata, and design notes.

Specification changes listed are permanent; the 80386 data sheet wil l b*~
modified to incorporate the changes.

The errata i tems described herein wi l l be corrected on future steppings of
the 80386.

NOTES:

80386-B1 component identifier readable in DH after reset: 03H
801o6-B l rev is ion iden t i fie r readab le in DL a f te r rese t : 03H

At this t ime, BI stepping parts are identified with one of the marks shown
below:

i i

i i
i i
i i
i i

A80386-16
S40344
(FPO number)
(m) (c) i '85 '86

ZZ

i i

i i A 8 0 3 8 6 - 2 0
i i S 4 0 3 6 2
ii (FPO number)
i i (m) (c) i ' 8 5 ' 8 6

ZZ

80386 In te l Corpo ra t i on P rop r ie ta ry

pcjs.org

Specificat ion Changes

The spec ificat ion changes l i s ted in th is sec t ion app ly to the la tes t vers ion
of the 80386 datasheet, version -003 dated November 1986. This datasheet is
part of the 1987 Microprocessor and Peripheral Handbook, order number
230843-004. Specification changes 3, 5, and 6 have already been incorporated
into th is datasheet ; the remain ing i tems wi l l be inc luded in fu ture vers ions
of the datasheet.

1. NT Bit and IOPL Bits in Real Mode

The NT bit and IOPL bits of the FLAGS register can be set in Real Mode of
the 80386. The exact behavior of these bits in 80386 Real Mode was not
previously documented. Note that in 80286 Real Mode, these bits can not
be set (they always remain 0 in 80286 Real Mode) .

2. Coprocessor Data Pointer Stored by FSAVE/FSTENV Instructions is Undefined
after Non-memory Instruct ions

The contents of the operand address field resulting from a FSTENV or
FSAVE are undefined i f the preceding coprocessor ar i thmet ic instruct ion
did not have a memory operand. The exact contents of the operand address
fie ld in th is case was spec ified p rev ious ly. Th is now confirms tha t the
operand address field is undefined in that case.

3 . B i t S t r i ng Inse r t and Ex t rac t I ns t ruc t i ons Removed

Since the 80386 has unique and powerful 64-bit Double Shift instructions,
a n d f a s t m u l t i - b i t s h i f t a n d r o t a t e i n s t r u c t i o n s , t h e " B i t S t r i n g I n s e r t "
and "B i t S t r ing Ex t rac t " i ns t ruc t ions were removed . The inser t /ex t rac t
comp lex ins t ruc t ions d id no t p rov ide an add i t i ona l benefi t tha t fu l l y
jus t ified inc lud ing them in 80386 s i l i con and a l l fu tu re compat ib le
processors. A review concluded that the 80386 user obtains fu l l
per formance in b i t s t r ing manipu la t ions us ing o ther power fu l ins t ruc t ions
such as 64 -b i t Doub le Sh i f t , and o the r mu l t i -b i t sh i f t / ro ta te
ins t ruc t ions . These ins t ruc t ions suppor t ex t reme ly fas t man ipu la t i on o f
general unal igned bi t str ings of any length, by processing them in
32-b i t chunks.

4. PC/AT Compatible Coprocessor Connection

Refer to the 80387 Stepping Information for a description of how to
connect the 80387 to the 80386 in a PC/AT-compatible manner. A small
amount of logic is necessary to use the PC/AT non-standard method of
reporting coprocessor errors. When using the recommended 80386/80387
connection (80387 BUSY#, ERROR#, and PEREQ pins connected directly to the
80386), no special provisions are necessary.

5. Read Cycles Require Valid Data Bus Levels

The 80386 requires that al l data bus pins be at a val id logic state (high
or low) at the end of each read cycle, when READY* is asserted. The
system MUST be designed to meet this requirement. Therefore, do NOT
allow any data l ines to be floating when the read cycle completes. NOTE:
The I/O read cycles just mentioned in the previous item, item 4, are free
f rom th is requi rement .

Impl icat ions: I f the device being read is a 32-bi t device, such as a
32-bit memory, the system should present 32-bits of data to the 80386
even if not all of the 80386 byte enables are asserted.

I f the device being read is a 16-bi t or an 8-bi t device, however, pul lup
resistors can be used to guarantee valid logic levels on the upper data
l ines, wh ich o therwise would be float ing. Note that bus cyc les to 16-b i t
and 8-b i t dev ices typ ica l ly inc lude severa l wa i t s ta tes , but a lways

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y , 2

pcjs.org

calculate the effects of R-C t ime constants to ensure the pul lups wi l l
dr ive proper logic levels onto the bus wi th in the t ime required.

6. I/O Permission Bitmap Must Reside Within TSS Offset OFFFFh

The 80386 requires that the ent ire I /O permission bitmap (including the
terminating byte of "OFFh"), which is part of an 80386 TSS, begin at an
offset no larger than ODFFFh. This guarantees the entire bitmap (up to 8
ki lobytes + 1 terminator byte of OFFh) wi l l reside at TSS offsets of
OFFFFh or less. Therefore, the pointer within a 386 TSS called
Bit_Map_Offset(15:0) must contain a value of ODFFFh or less under all
conditions, even when you intend ^e Bit_Map_Offset to point beyond the
l i m i t o f t h e T S S i t s e l f .

7. BS16# Must Not Be Asserted During Pipelined Bus Cycles

In datasheet figures 5-16, 5-17, 5-19, and 5-22, the bus size 16 (BS16#)
input is shown as "don't care" during T2P and T21 in pipelined bus
cyc les . Th is i s i ncor rec t . In these figures , BS16# shou ld be h igh
during states T2P and T21. That is, once address pipelining has been
requested by asserting next address (NA#), BS16# must be negated for the
remainder of the current bus cycle.

Implications: Don't assert BS16# if NA# has already been sampled
asserted in the current bus cycle.

8. Double Page Faults Do Not Raise Double Fault Exception

If a second page fault occurs while the processor is attempting to enter
the serv ice rou t ine fo r the fi rs t , then the p rocessor w i l l i nvoke the
page fault (exception 14) handler a second time, rather than the double
fau l t (excep t ion 8) hand le r. A subsequen t fau l t , t hough , w i l l l ead to
shutdown.

Impl icat ions: Since double page faul ts normal ly do not occur, no
workaround is necessary.

9. Alignment of Maximum-Sized Segments

If a maximum-sized code segment (limit«FFFFFFFFH) does not start on
a double-word boundary, then a segment l imit violat ion (exception 13)
wi l l occur when the processor a t tempts to fe tch the fi rs t ins t ruc t ion
in the segment. This happens because the prefetcher, which always
fetches double words, detects a match with the segment l imit, which is
one less than the segment base due to wrap around.

Implications: I f a maximum-sized segment is used, i t should be dword
al igned (i .e . the two least s ign ificant b i ts o f the segment base should
be zero) . Dword a l ignment is su ffic ient to ensure cor rec t opera t ion o f
the 80386. In addition, Intel recommends that maximum-sized segments be
page aligned (i.e. the lowest 12 bits of the segment base should be
zero) fo r compat ib i l i t y w i th fu tu re p rocessors .

10. Move from Segment Register with 32-bit Destination

This clar ifies how the MOV r/ml6,Sreg instruct ion behaves with various
operands and operand sizes. When a 32-bit operand size is selected, and
the des t ina t ion is a reg is te r, the 16-b i t segment reg is te r i s cop ied in to
the lower 16 bi ts of dest inat ion register, and the upper 16 bi ts of the
dest inat ion register are undefined. With a 16 bi t operand s ize and a
regis ter operand, on ly the lower 16 b i ts o f the dest inat ion reg is ter are
affected (the upper 16 bits remain unchanged) . With a memory operand,
the 16 bit segment register value is written to memory as a 16 bit
quant i ty, regard less o f operand s ize . Thus, 32-b i t so f tware shou ld
always treat the dest inat ion operand as 16-bits, and mask bits 16-31 i f
necessary.

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y

pcjs.org

E r r a t a

1. Opcode Field Incorrect for FSAVE and FSTENV

Problem: If an FSAVE or an FSTENV is executed in REAL mode or in VIRTUAL
8086 mode, the opcode field stored in memory is incorrect i f i t should
have referred to a coprocessor instruct ion which t ransfers e i ther two
bytes or ten bytes from memory to the coprocessor. The instruction and
operand l i near address fie lds a re co r rec t l y s to red . No te tha t
coprocessor er ror -handl ing rout ines are the on ly rout ines poss ib ly
affected. Also note that the problem does not occur in PROTECTED mode
programs (since no opcode is saved by FSAVE or FSTF>TV in that case) .
Workaround: In REAL mode or in VIRTUAL 8086 mode, the instruction linear
address field can be used to read the opcode from memory. Note that the
two bytes fetched need to be swapped to yield the image that FSAVE and
FSTENV normal ly stores. The fo l lowing is a possible fixup sequence.

F S T E N V [B X] ; s a v e e n v i r o n m e n t
M O V C X , [B X + 8] ; g e t l i n e a r I P < 1 9 : 1 6 >
A N D C X , 0 F 0 0 t) h ; t r e a t i t l i k e a s e l e c t o r
M O V S I , [B X + 6] ; g e t l i n e a r I P < 1 5 : 0 >
M O V F S , C X ; e s t a b l i s h a d d r e s s a b i l i t y
M O V C X , F S : [S I] ; g e t r a w o p c o d e v a l u e
X C H G C H , C L ; s w a p b y t e s a n d
A N D C X , 7 F F h ; m a s k o u t t o p b i t s
;CX now has the opcode — store back if needed
M O V S I , [B X + 8] ; g e t o p c o d e w o r d
A N D S I , 0 F 8 0 0 h ; m a s k o u t t h e b a d
O R S I , C X ; m a s k i n t h e g o o d
M O V [B X + 8] , S I ; a n d s t o r e b a c k

The opcode saved within the FSAVE FSTENV operand is in the following
format :

1 0 9 8 7 6 5 4 3 2 1 0
I I I I

l o w e r t h r e e b i t s m o d r / m b y t e
of ESC byte

2. FSAVE, FRESTOR, FSTENV and FLDENV Anomalies with Paging

Problem: If either of the last two bytes of an FSAVE or ah FSTENV
operand are for *any reason not writeable, or either of the last two bytes
of an FRESTOR or FLDENV are for any reason not readable, the instruction
is not restar tab le . Th is prob lem wi l l ar ise on ly in demand-paged
systems, or demand-segmented systems which increase segment size on
demand.

Workaround: A simple workaround is to write some value into the last two
bytes of the FSAVE/FSTENV operand just prior to the instruction, or read
the last two bytes prior to an FLDENV/FRESTOR. Another workaround is to
avoid having the operand of these instructions cross a page or segment
boundary. In paged systems, this can be accomplished by aligning these
operands on any 128-byte boundary.

3. Wraparound Coprocessor Operands

Problem: This can affect only si tuat ions where a coprocessor operand
straddles the limit of a segment of maximum size (i.e. OFFFFh for a 16-
bit segment or OFFFFFFFFh for a 32-bit segment) or within 108 bytes of
maximum size, thus wrapping around to offset 0 of the segment. Since
a wraparound situation is very abnormal for a compiler or programmer to
create, th is does not affect a typ ica l system.

Formally, the 8038 6 architecture does not permit an operand (coprocessor
operands included) to wrap around the end of a segment. If the user

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y 4

pcjs.org

issues such an instruction nonetheless in a Protected Mode system, and
the operand starts and ends in valid, present pages of a segment, BUT
spans through an invalid or inaccessible page, the coprocessor may be putin an indeterminate state. In such cases, an FCLEX or FINIT instruct ion
needs to be executed before any other coprocessor instruction is issued.

Workaround: In Real Mode, this is not a problem since protection is not
enabled. In Protected Mode, this problem is avoided simply by not
creating coprocessor operands which wrap around the end of the segment,
or by aligning the base of all segments on page boundaries.

4. IRET to TSS wi th L imi t too Smal l

Problem: If an IRET performs a task switch to a TSS of proper descriptor
type bu t inva l id (too sma l l) l im i t , a Doub le Fau l t (excep t ion 8) w i l l
resul t instead of a Inval id TSS Faul t (except ion 10) as should resul t .
Furthermore, i f the Double Fault entry in the IDT is a trap gate, a
shutdown resul ts . In a re la ted top ic , i f the TSS Faul t ent ry in the IDT
is invalid for any reason (e.g. bad AR byte), then instead of a Double
Fault (except ion 8), a shutdown resul ts.

Workaround: A working system, one that creates TSS segments of adequate
size to hold the processor state (44 bytes for the TSS of a 16-bit task,
104 bytes for the TSS of a 32-bit task), wil l not encounter any problems
here. A work ing system should a lso prov ide a val id gate (in terrupt ,
t rap, or task gate) in the IDT for except ion 8.

5. Single-Stepping Fi rs t I terat ion of REP MOVS

Problem: If a REPeated MOVS instruction is executed when single-stepping
is enabled (TF =» 1 in EFLAGS register), a single-step trap (exception 1)
is taken every two move steps, but should occur each move step. Also, if
a data breakpoint is hit during a odd iteration number of REP MOVS, the
data breakpoint t rap is not taken unt i l af ter the next even-numbered
iteration. If the REP MOVS ends with an odd number of iterations, and
single-stepping or data breakpoints are enabled, then a s ingle-step t rap
o r da ta b reakpo in t t rap on the fina l i t e ra t i on w i l l p rope r l y occu r a f te r
the fina l , odd-numbered i t e ra t ion .

Workaround: When using the Trap Flag or data breakpoints with a debugger
uti l i ty, this minor variation of REP MOVS must be accepted, unless an
effort is made to have the debugger emulate the REP MOVS rather than
a c t u a l l y e x e c u t e i t .

6. Task Switch to Virtual 8086 Mode Doesn't Update Prefetch Limit

Problem: When a task switch to Virtual 8086 Mode is performed, the
prefetch limit is not updated to become OFFFFh, but instead remains at
i t s p rev ious va lue .

Workaround: Use the IRET instruct ion to transfer to Virtual 8086 Mode.
Using IRET is the preferred method for most instances, especially when
the master'OS dispatches a Virtual 8086 Mode program, because IRET can
cause the t ransi t ion wi thout a task swi tch.

7 . Wrong Reg is te r S ize fo r S t r ing Ins t ruc t ions in M ixed 16 /32-b i t
Addressing* Systems
Prob lem: I f ce r ta in s t r i ng and loop ins t ruc t ions a re fo l l owed by
i n s t r u c t i o n s t h a t e i t h e r :

1) u s e a d i f f e r e n t a d d r e s s s i z e (t h a t i s , i f e i t h e r t h e s t r i n g
ins t ruc t ion or the fo l lowing ins t ruc t ion uses an address s ize
p r e fi x) , o r

2) reference the stack (e.g. PUSH/POP/CALL/RET) and the "B" bit in the
SS descr iptor is di fferent f rom the address size used by the str ing

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y 5

pcjs.org

i n s t r u c t i o n s ,

then one or more of (E)CX, (E)SI, or (E)DI is not updated properly. The
s ize o f the reg is ter (16 vs . 32) is taken f rom the fo l lowing ins t ruc t ion
ra the r t han f rom the s t r i ng o r l oop i ns t ruc t i on . Th i s cou ld resu l t i n
updat ing on ly the lower 16 b i ts o f a 32-b i t reg is ter, o r in updat ing a l l
32 bi ts of a register being used as 16 bi ts . The instruct ions and
reg is te rs a f fec ted by th is a re l i s ted be low:

i n s t r u c t i o n Reg is te r (s)

MOVS • (E)DI
REP MOVS (E)SI
STOS (E)DI
INS (E)DI
REP INS (E)CX

Workaround: No workaround is necessary i f al l code is 16-bit or i f al l
code i s 32 -b i t . The p rob lem on ly occu rs i f i ns t ruc t i ons w i th d i f f e ren t
address sizes are mixed together, or if a code segment of one size is
used with a stack segment of the other size.

In a System which mixes address sizes, add a NOP after each of the above
instructions and ensure that the NOP has the same address size as the
s t r i n g / l o o p (i . e . , i f t h e s t r i n g / l o o p i n s t r u c t i o n i n c l u d e s a n a d d r e s s
prefix, place the same address prefix before the NOP; conyersely, i f the
str ing/ loop instruct ion does not have an address prefix, do not place a
prefix before the NOP).

8. FAR Jump Located Near Page Boundary in Virtual 8086 Mode Paged Systems

Problem: In Virtual 8086 Mode, if a direct FAR jump (opcode EAh)
instruct ion is located at the end of a page (or within 16 bytes of the
end), and the next page is not cached in the TLB, the prefetcher l imit is
not set by the FAR jump instruction to the "end" on the new code segment,
but rather is lef t at the "end" of the old code segment. This can al low
execution beyond the end of the new segment without triggering a segment
l im i t v i o l a t i on . Or i t can resu l t i n a spu r i ous GP fau l t i f t he o ld and
new segments overlap, and a prefetch occurs beyond the limit of the eld
segment.
Note that the prefetch l imit is checked on the l inear address, not by
comparing IP to OFFFFh.
Workaround: Al l exist ing 8086 programs use only 16-bit addressing, and
thus will not execute code at offsets greater than OFFFFh from the code
segment base. Thus the lack of detection of walking off the end of a
code segment should not impact working 8086 programs.

A workaround to the spurious GP fault , i f i t occurs, is to simply IRET
back to the fau l t i ng ins t ruc t ion , s ince the IRET w i l l co r rec t l y se t the
p r e f e t c h l i m i t . I f t h e f a u l t h a n d l e r h a s c o n t r o l o f t h e s i n g l e - s t e p
funct ion, a very s imple workaround is to at tempt to s ingle-step the
fau l t i ng i ns t ruc t i on . I f t he s i ng le - s tep succeeded , t he hand le r cou ld
c lea r t he fau l t , t u rn o f f s i ng le -s tepp ing , and IRET. I f a GP fau l t
occur red a t tempt ing to s ing le -s tep the ins t ruc t ion , a " rea l " GP fau l t i s
the cause.

I f t he f au l t hand le r canno t access t he s i ng le - s tepp ing f unc t i on , i t s t i l l
can check for "real" GP faults which must be emulated by the master OS,
for example, I /O instruct ions that need to be emulated, CLI/STI
ins t ruc t ions that must be emula ted, e tc . I f none o f these fau l ts are
recognized, the fault handler can assume this errata caused the GP fault
and simply IRET back to the instruction.

9. Page Fault Error Code on Stack Not Reliable

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y 6

pcjs.org

Problem: When a Page Fault (exception 14) occurs, the 3 defined bits in
the error code may be unrel iable i f a certain sequence of prefetch is
happening at the same time.
Workaround: Although the page fault error code pushed onto the page
faul t handler 's s tack can be unre l iab le, as descr ibed, the page faul t
l inear address stored in register CR2 is a lways correct . The page faul t
handler should refer to the page fault l inear address in CR2 to access
the corresponding page table entry and thereby determine whether the page
fault was due to a page "not present" condit ion, or to a usage violat ion.

10. Certain I/O Addresses Incorrect when Paging is Enabled

Problem: When Paging is enabled, accessing I/O addresses in the range
OOOOlOOOh-OOOOFFFFh (4K through 64K-1) or accessing coprocessor ports
(I/O addresses 800000F8h-800000FFh) as a result of executing coprocessor
opcodes, can generate incorrect I/O addresses if paging is enabled and
the corresponding l inear memory address is marked "present" and "dirty."

Furthermore, when paging has been enabled and is then turned off, paging
translat ion continues to occur for memory or I /O cycles (I /O as described
above) to l inear addresses st i l l stored in the TLB, but paging does not
occur for l inear aiddresses that result in a TLB miss.

Workaround: Unless paging is used, th is i tem is not a problem. I f
paging is used but all I/O ports are below OOOOlOOOh (as in a PC-DOS
system), then I/O is no problem.
If paging is used and I/O ports exist in the range OOOOlOOOh-OOOOFFFFh,
then either have the memory pages at those linear addresses marked "not
present" (to avoid having those pages table entries cached in the TLB),
or if "present," have those pages mapped such that bits* 12-15 of the
phys ica l address equa l b i t s 12-15 o f the l i near address . A l te rna t i ve ly,
re-assign any I/O ports in the range OOOOlOOOh-OOOOFFFFh to below
OOOOlOOOh.

If paging is used and the coprocessor is also used, then have the memory
page at l inear address 80000xxxh either marked "not present" (to avoid
having that page table entry cached in the TLB), or i f "present," have
the page mapped such that bi t 31 (the most significant bi t) of that
page's physical address is a 1.
To completely disable 80386 paging when paging was previously enabled,
the 80386 TLB should be flushed immediately after resetting the PG bit in
CRO. The TLB can be flushed, you recall, by writing a Page Table
Directory base address to register CR3.

11. Wrong ECX Update by REP INS

Problem: The ECX register (or CX in case of 16-bit operations) is not
updated properly in the case of a REP INS instruction (INPut str ing
ins t ruc t ion w i th any REPeat prefix) tha t i s fo l lowed by an ear ly -s tar t
instruct ion (e.g. PUSH, POP or memory reference instruct ions). Af ter any
REP-prefixed instruct ion, ECX is supposed to be 0 (nul l) . But in thecase of a REP INS instruction, ECX is not updated correctly and is
OFFFFFFFFh (or CX is OFFFFh in case of 16-bit operations) . It should be
noted that the REP INS executes the correct number of iterations and EDI
(or DI) is updated proper ly.

Workaround: After a REP INS instruction, do not rely on ECX (or CX)
being zero. Hence, a new count (if any) should be MOVed into ECX, rather
than being ADDed into ECX.

12. NMI Doesn't Always Bring Chip Out of Shutdown in Obscure Condition with
Paging Enabled
Problem: I f paging is enabled, and i f the IDT gate for the Double Fault

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y 7

pcjs.org

hand ler (the gate fo r except ion 8) po in ts to the nu l l descr ip tor s lo t ,
. descriptor 0, in the GDT (this would be very a strange way to set up a

system), and a TLB miss occurs when accessing the null descriptor ^ slot,
the ch ip en ters shutdown as i t shou ld in th is case. In th is spec ific
case however, an incoming NMI will not be able to bring the 386 out of
shu tdown . I n t h i s spec i fic case , on l y rese t w i l l b r i ng the 386 ou t o f
shutdown.

Workaround: Ensure that the IDT gate for *-*e Double Fault Handler has
a non-nul l selectors for CS, and that SS of the dest inat ion level is a lso
n o n - n u l l .

13. HOLD Input During Protected Mode Interlevel IRET when Paging i«* Fn^bled

Problem: Under specific s i tuat ions involv ing paging and the page
privi lege bits, the HOLD input, and a RET or IRET instruction performing
an inter- level return to level 3, a problem can develop. These
situations can be avoided by the workarounds given.

The firs t s i tuat ion, when the inner leve l s tack (leve ls 0 , 1 , and 2)
is not dword aligned (or not word aligned in the case of a 16-bit
(I)RET) , requi res that severa l condi t ions occur s imul taneous ly :

1) Paging must be enabled, and the page table and directory entries
for the inner level stacks must be marked as supervisor access only.

2) The software must execute an inter-level RET or IRET to a
Protected Mode program at pr iv i lege level 3. An inter- level IRET to
Vir tual 8086 Mode does not exhibi t th is problem. An inter- level RET
or IRET to level 1 or 2 does not exhibit this problem.

3) The inner level stack must be unaligned to a dword boundary
(word boundary for a 16-bit (I)RET).

When the first s i tuat ion occurs, a page fau l t . (except ion 14) occurs
spur ious ly, i nd ica t ing a page leve l p ro tec t ion v io la t ion dur ing a "user "
leve l read of the inner leve l s tack.

The second situation, whether or not the inner level stack is dword
al igned (or word al igned in the case of a 16-bi t (I)RET), also requires
that severa l condi t ions occur s imul taneous ly :

1) Paging must be enabled, and the page table and directory entries
for the inner level stacks must be marked as supervisor access only.

2) The software must execute an inter-level RET or IRET to a
Protected Mode program at pr iv i lege level 3. An inter- level IRET to
Vir tual 8086 Mode does not exhibi t th is problem. An inter- level RET
or IRET to level 1 or 2 does not exhibit this problem.

3) The bus HOLD input must be asserted during the read cycle which
pops ESP (or SP) off the inner stack as a result of a RET or IRET
i n s t r u c t i o n .

When the second situation occurs, no exception is generated, but the
processor wi l l dr ive an incorrect phys ica l address dur ing. the read cyc le
in which SS is popped from the inner level stack.

Workarounds: A software workaround to both situations is to mark all
pages which contain the inner level stacks as user readable. This
p reven ts e i the r the fi rs t o r second s i tua t ion f rom occur r ing . The
segmentation system can be used to prevent user access to the linear
addresses conta in ing the inner- leve l s tacks.

A workaround if not using the HOLD input is merely to keep the inner-
leve l s tacks a l i gned .

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y

pcjs.org

A Hardware workaround if using the HOLD input but not using the
sof tware workaround above is the fo l lowing: S ince the prob lem occurs
dur ing the first cyc le af ter a locked cycle to read the CS descr iptor, a
hardware workaround is to prevent a HOLD request from hitting the
processor during bus cycle following a LOCKed cycle. This can be
accomplished with a latch that delays the LOCK# signal through a
flip-flop clocked by READY* to gate a HOLD request going into the chip.
This wi l l prevent a hold request f rom gett ing to the 80386 unt i l af ter
the complet ion of the first cycle after a LOCKed cycle. For the hardware
workaround to be sufficient, a l l s tacks must be proper ly a l iened, and
BS16# must be tied inactive.

14. Protected Mode LSL Instruction Should not be Followed by POsH/POP

Problem: This i tem per ta ins on ly to Protected Mode. I f the Protectedf
Mode LSL instruct ion (Load Segment Limit instruct ion, executable only in
Protected Mode) is immediate ly fo l lowed by cer ta in inst ruct ions that
perform a stack operation, such as PUSH, or POP (see exact list below),
the value of the (E)SP register may be incorrect after the stack
opera t ion . No te tha t s tack opera t ions resu l t i ng f rom in te r rup ts o r
exceptions fol lowing LSL do update (E)SP correctly.
Workaround: Do not immediately fol low the Protected Mode LSL instruction
wi th any o f the fo l low ing s tack opera t ion ins t ruc t ions : IRET (in t ra -
task), POPA, POPF, POP (mem, reg, seg-reg), RET (intrasegment or
in te rsegment) , CALL (d i rec t in t rasegment , d i rec t in te rsegment , ind i rec t
intrasegment via reg), ENTER, PUSHA, PUSHF, PUSH (mem, reg, seg-reg,
immed). Other inst ruct ions that operate on the stack (e.g. CALL indi rect
via memory, and LEAVE) can be used safely after the Protected Mode LSL.
Note that even if a forbidden instruction immediately fol lows LSL, (E) SP
may st i l l be updated correct ly, s ince this problem is data-dependent and
only occurs i f the LSL operat ion succeeded (i .e. i f LSL set the ZF flag).

15. LSL/LAR/VERR/VERW Instructions Malfunction with Null Selector

Problem: The Protected Mode instructions LSL, LAR, VERR or VERW executed
wi th a nu l l se lector (i .e . b i ts 15 through 2 of the se lector set to zero)
as the operand will operate on the descriptor at entry 0 of the GDT
ins tead o f uncond i t iona l ly c lear ing the ZF flag.

Workaround: The "nu l l descr ip to r " (i .e . the descr ip to r a t en t ry 0 o f the
G D T) s h o u l d b e i n i t i a l i z e d t o a l l z e r o s . I f t h e " n u l l d e s c r i p t o r " i s
in i t ia l i zed to a l l zeros (i .e . an inva l id va lue) , the access made by
t h e s e i n s t r u c t i o n s t o t h e " n u l l d e s c r i p t o r " w i l l f a i l (s i n c e t h e s e
ins t r uc t i ons on l y ope ra te on va l i d desc r i p to r s) . The f a i l u re w i l l be
reported with ZF cleared, which is the desired behavior when the operand
is a nul l selector. Note that many systems already have the "nul l
descr ip to r " in the GDT in i t ia l i zed to zeros , as i s des i red fo r th is
workaround.

16. "Not Present" LDT in VM86 Task Raises Wrong Exception

Problem: A task switch to a VM86 task that has a "not present" LDT
descriptor wi l l cause a Segment Not Present fault (except ion 11) rather
than an Inval id TSS fault (exception 10).

Workaround: The simplest workaround is to use a NULL selector for
the LDT in a VM86 task, since the LDT is not used when executing in
Vi r tua l 86 mode. However, i f an in terrupt or except ion occurs, the
processor wil l switch out of Virtual 86 mode, into protected mode to
hand le the in te r rup t , w i thou t sw i t ch ing tasks . Thus , the opera t ing
system should be structured so that al l Interrupt and Trap gates
active when executing a VM86 task reference segments in the GDT.
If an LDT must be supplied for a task that executes in Virtual 86 mode,
there are several easy workarounds. One is to ensure that LDT segments
are never marked "not present" in their segment descr iptors. Paging is

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y 9

pcjs.org

not affected by this errata. LDT segments can be paged out and marked
"not present" in their page descriptors in systems which use paging.

If the operating system must mark the LDT segment descriptor "not
present", the "not present" (exception 11) handler must be able to
handle the case of a "not present" LDT during a task switch. The "not
present" exception is reported with the LDT selector as the error code
and with the VM bit set to 1 in the EFLAGS image of the caller. Since
a VM86 task cannot normally raise a "not present" fault, the "not
present" exception handler can detecu this case by checking i f the stored
VM bi t is set . I f so, the faul t can be redi rected to the TSS Faul t
hand le r.

17. Coprocessor Instructions Crossing Page/Segment Boundaries

Prob lem: I f the fi rs t by te o f a coprocessor (ESC) ins t ruc t ion i s
located on the last byte of a page or segment, and the second byte is
located on a page or segment which would create a fault, then the
processor w i l l hang when i t t r ies to s igna l the fau l t . The processor
remains stopped unt i l an interrupt, NMI, or RESET occurs. This errata
appl ies only to coprocessor inst ruct ions in systems which use v i r tual
memory.
Workaround: In vir tual memory systems, the t ime-sl ice of watchdog t imer
provides an easy workaround, since a t imer interrupt wil l always cause
the processor to beg in in ter rupt process ing. The t imer rout ine shou ld
tes t the fo l low ing cond i t ions to de termine i f th is e r ra ta was
encountered.

1) The saved CS:EIP must point within 8 bytes of the end of a page.
2) The last byte within the page must contain an ESC opcode.
3) All bytes between the saved CS:EIP and the ESC opcode must contain

valid prefix opcodes (segment override 26h, 2Eh, 36h, 3Eh, 64h, 65h,
address size override 67h, operand size override 66h).

4) The next page is not present, or not accessible.
I f a l l four condi t ions are t rue, then the t imer rout ine can assume th is
errata was encountered, and signal a page fault , which wi l l c lear
the condit ion. This workaround should be placed in the Operating System,
so that appl icat ions programs are unaffected.

18. Breakpoints Malfunction after Reading CR3, TR6, or TR7

Problem: Breakpoints-associated with the four debug registers (DRO-3)
will not work correctly after a MOV from CR3, TR6 or TR7 is executed.
The contents of DRO-3 are unaffected; however, spurious breakpoints may
resu l t . Th is cond i t i on pers is ts un t i l t he p rocessor execu tes the nex t
j ump ins t ruc t i on . Th i s e r ra ta does no t a f fec t t he b reakpo in t i ns t ruc t i on
(opcode OCCh) or the single-step trap (TF, bit 8 in EFLAGs).

Workaround: Breakpoin ts wi l l work cor rect ly i f the fo l lowing sequence
is always used to read CR3, TR6, or TR7.

1) Disable breakpoints by clearing G0-G3, L0-L3 in DR7
2) MOV from CR3, TR6, or TR7 to the destination
3) Jump to the nex t ins t ruc t ion
4) Re-enable breakpoin ts

19. Return Address Incorrect for Segment Limit Fault during FNINIT

Problem: In protected mode, i f the segment l imi t is set so that the
last byte of an FNINIT opcode falls on the last byte of a segment, then
the processor w i l l ind ica te a segment l im i t fau l t (except ion 13) , w i th .
the return address (saved on the stack) pointing to the FNINIT opcode.
Since the FNINIT opcode fal ls ent i rely within the segment, the return
address should point to the next inst ruct ion.

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y 1 0

pcjs.org

Workaround: In systems which restar t inst ruct ions on segment l imi t
fau l ts , the except ion handler should test for an FNINIT inst ruct ion at
the end of a segment and adjust the return address accordingly.
Al ternat ive ly, the except ion handler can leave the return address
unchanged, and allow the FNINIT to be executed a second time. In systems
in which walking off the end of a segment indicates a nonrecoverable
software error, no workaround is necessary.

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y 1 1

pcjs.org

Design Notes
1. Read Cycles Require Valid Data Bus Levels

Please refer to Specification Change 5 for important news on proper
system design for 386 read cycles.

2. Use of ESP as a Base Register With CALL, PUSH, and POP Instructions

Th is c la r ifies how ESP behaves w i th ins t ruc t ions tha t imp l ic i t l y
reference the stack and expl ic i t ly reference anothei locat ion in memory
using ESP as a base register.

E x p l i c i t M e m o r y E S P v a l u e
I n s t r u c t i o n R e f e r e n c e u s e s u s e d a s b a s e

the ESP value.•.

C A L L - i n d i r e c t - t h r u - m e m o r y b e f o r e o l d E S P
decrementing

P U S H - f r o m - m e m o r y b e f o r e o l d E S P
decrementing

P O P - t o - m e m o r y a f t e r n e w E S P
increment ing

This is consistent in that the CALL-indirect-thru-memory and the PUSH-
from-memory both use the same ESP value.

Furthermore, the relation between PUSH-from-memory and POP-to-memory is
such that i t a l lows the inst ruct ion sequence:

PUSH [ESP+n]
POP [ESP+n]

to have the desirable property of both instruct ions referencing the same
memory location.
Use of Code Breaks to Debug 86/286 Operating Systems

The RF bit in the EFLAGS register is cleared by a 16-bit IRET, making
i t d i fficu l t to use the on-ch ip debug reg is ters to se t code breakpo in ts
to debug 16-b i t operat ing systems. Data breakpoints work fine in a l l
cases, and code breakpoints work fine as long as al l interrupt handlers
are 32-b i ts and re turn w i th 32-b i t IRETs or task swi tches. In 16-b i t
environments, software debuggers should use the CC (single byte INT 3
inst ruct ion) to p lace sof tware breakpoints in code.

Use of ESP in 16-bit Code with 32-bit Interrupt Handlers

When a 32-bit IRET is used to return to another privi lege level, and
the old level uses a 4G stack (B«l), while the new level uses a 64k
stack (B=0), then only the lower word of ESP is updated. The upper word
remains unchanged. This is fine for pure 16-bit code, as wel l as pure
32-b i t code. However, when 32-b i t in ter rupt handlers are present , 16-b i t
code should avoid any dependence on the upper word of ESP. No changes
are necessary in existing 16-bit code, since the only way to access ESP
in USE16 segments is through the 32-bit address size prefix.

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y 1 2

pcjs.org

