
IBM CONFIDENTIAL

K a r c h 2 6 , 1 9 8 7

8 0 3 8 6 I n f o r m a t i o n

A t t a c h e d f o r y o u r i n f o r m a t i o n i s . a d o c u m e n t e n t i t l e d , " E r r a t a
S u m m a r y f o r 8 0 3 8 6 B - l " . T h i s d o c u m e n t p r o v i d e s i n f o r m a t i o n
r e g a r d i n g : s p e c i fi c a t i o n c h a n g e s , e r r a t a , a n d d e s i g n n o t e s
p e r t i n e n t t o t h e I n t e l 8 0 3 8 6 B - i ~ s t e p . T h i s i n f o r m a t i o n
s u p p l e m e n t s e x i s t i n g I n t e l 8 0 3 3 6 D a t a S h e e t s , w h i c h a r e

^ p u b l i c l y a v a i l a b l e . . .

• P*

^ 1 M

- $

pcjs.org

IBM CONFIDENTIAL ERRATA SUMMARY FOR 80386 B-l

ERRATA SUMMARY
FOR

80386 B-1

March 12, 1987

IBM CONFIDENTIAL

This document contains information of a proprietary nature. ALL INFORMATION
CONTAINED HEREIN SHALL BE KEPT IN CONFIDENCE. None of this information shall be
divulged to persons other than IBM employees authorized by the nature of their
duties to receive such information.

pcjs.org

I B M C O N F I D E N T I A L E R R A T A S U M M A R Y F O R 8 0 3 8 6 B - 1

CONTENTS

1 . 0 S T E P P I N G I N F O R M A T I O N 1

2 . 0 S P E C I F I C A T I O N C H A N G E S 2

3 . 0 E R R A T A - . . - - * • . ; . . - r . . - 5

4 . 0 D E S I G N N O T E S 1 4

Contents ii

pcjs.org

IBM CONFIDENTIAL ERRATA SUMMARY FOR 80386 B-l

1.0 STEPPING INFORMATION

This document contains specification changes, errata and design notes.

Specification changes listed are permanent; the 80386 data sheet will be modified to
incorporate the changes.

The errata i tems described herein wi l l be corrected on future steppings of the
80386.

Notes:

1. 80386-B1 component identifier readable in DH after reset: 03H

2. 80386-B1 revision identifier readable in DL after reset: 03H

At this time, BI stepping parts are identified with one of the marks shown below:

i i

i i A80386-16
i i S40344
ii (FPO number)
i i m c i ' 8 5 ' 8 6

ii A80386 ES BI
i i
i i
i i m c i ' 8 5 ' 8 6

i i

i i A80386-20
i i S40362
ii (FPO number)
i i m c i ' 8 5 ' 8 6

STEPPING INFORMATION 1

pcjs.org

IBM CONFIDENTIAL ERRATA SUMMARY FOR 80386 B-l

2.0 SPECIFICATION CHANGES

The spec ificat ion changes numbered 1 through 4 for prev ious vers ions o f the 80386
have now been incorpora ted in the la tes t ve rs ion o f the 80386 da ta sheet , ve rs ion
-002. The remain ing spec ificat ion changes, here , are not renumbered beg inn ing wi th

1. NT Bit and IOPL Bits in Real Mode

The NT bit and IOPL bits of the FLAGS register can be set in Real Mode of the
. 80386. The exact behavior of these b i ts in 80386 Real Mode was not prev iously

documented. Note that in 80286 Real Mode, these bits cannot be set (they always
remain 0 in 80286 Real Mode).

2. Coprocessor Data Pointer Stored by FSAVE/FSTENV Instruct ions is Undefined After
Non-memory Instructions

The contents of the operand address field result ing from a FSTENV or FSAVE are
u n d e fi n e d i f t h e p r e c e d i n g c o p r o c e s s o r a r i t h m e t i c i n s t r u c t i o n d i d n o t h a v e a
memory operand . The exac t con ten ts o f the operand address fie ld i n th i s case
w a s s p e c i fi e d p r e v i o u s l y. T h i s n o w c o n fi r m s t h a t t h e o p e r a n d a d d r e s s fi e l d i s
undefined in that case.

3 . B i t S t r i ng Inser t and Ex t rac t Ins t ruc t ions Removed

S i n c e t h e 8 0 3 8 6 h a s u n i q u e a n d p o w e r f u l 6 4 - b i t d o u b l e s h i f t i n s t r u c t i o n s a n d
f a s t m u l t i - b i t s h i f t a n d r o t a t e i n s t r u c t i o n s , t h e " B i t S t r i n g I n s e r t " a n d " B i t
S t r i n g E x t r a c t " i n s t r u c t i o n s w e r e r e m o v e d . T h e i n s e r t / e x t r a c t c o m p l e x
i n s t r u c t i o n s d i d n o t p r o v i d e a n a d d i t i o n a l b e n e fi t t h a t f u l l y j u s t i fi e d
inc lud ing them in 80386 s i l i con and a l l f u tu re compa t ib le p rocesso rs . A rev iew
c o n c l u d e d t h a t t h e 8 0 3 8 6 u s e r o b t a i n s f u l l p e r f o r m a n c e i n b i t s t r i n g m a n i p u
la t i ons us ing o the r power fu l i ns t ruc t i ons such as 64 -b i t doub le sh i f t and o the r
m u l t i - b i t s h i f t / r o t a t e i n s t r u c t i o n s . T h e s e i n s t r u c t i o n s s u p p o r t e x t r e m e l y f a s t
man ipu la t ion o f genera l una l igned b i t s t r i ngs o f any leng th by p rocess ing them
i n 3 2 - b i t c h u n k s . \

4. ERROR// Input Difference - Effect on PC/AT Compatible Coprocessor Connection

On the 80386, latching the level of. BUSY// when ERROR// becomes active will cause
FST and FSTP ins t ruc t ions wh ich ge t e r ro rs to hang the 80386. On the 80286,
latching BUSY// when ERROR// becomes active (as performed in the PC/AT) did not
cause any problems.

Implications: The PC/AT uses a nonstandard scheme to report 80287 errors to the
80286 (a scheme compat ib le w i th the nons tandard scheme used to repor t 8087
e r ro r s t o t h e 8 0 8 8 i n t h e o r i g i n a l PC) . Th e sch e me u se d i n t h e PC /AT w o rks
because a separate data channel is used by the 80286 to communicate wi th the
80287. However, the 80386 communicates with the math coprocessor using micro
code loops. Therefore, PC/AT-compatible 80386 systems using an 80287 or 80387
numerics coprocessor must careful ly fol low the recommendations below when repl i
cat ing the PC/AT1s nonstandard method of report ing coprocessor errors.

H o w t o p r o p e r l y r e p l i c a t e t h e P C / AT c o p r o c e s s o r e r r o r - r e p o r t i n g s c h e m e : A
w o r k a r o u n d e x i s t s w h e n r e p l i c a t i n g t h e P C / AT c o p r o c e s s o r i n t e r f a c e i n 8 0 3 8 6
based systems. Note that th is workaround needs to be incorporated for the non
standard PC/AT scheme; the standard recommended 80386/80387 connection functions

SPECIFICATION CHANGES 2

pcjs.org

I B M C O N F I D E N T I A L E R R A T A S U M M A R Y F O R 8 0 3 8 6 B - 1

p r o p e r l y a n d t h e 8 0 3 8 6 i m p l e m e n t a t i o n w i l l n o t b e a l t e r e d . To u n d e r s t a n d t h e
workaround, le t us rev iew the AT in ter face.

In the PC/AT, the ERROR// input to the 80286 is t ied inactive (high) permanently.
T h e E R R O R / / o u t p u t o f t h e 8 0 2 8 7 i s t i e d t o a n i n t e r r u p t p o r t (I R Q 1 3) . T h i s
i n te r rup t rep laces e r ro r s i gna l i ng v ia t he 80286 ' s ERROR/ / i npu t . To gua ran tee
(in the case of an 80287 error) that INTR 13 wi l l be serv iced pr ior to the exe
c u t i o n o f a n y f u r t h e r 8 0 2 8 7 i n s t r u c t i o n s , a n e d g e - t r i g g e r e d fl i p - fl o p l a t c h e s
BUSY// using ERROR// as a clock. The output of this latch is ORed with the BUSY//
output of the 80287 and drives the BUSY// input of the 80286. This PC/AT scheme
effectively delays BUSY// deactivation at the 80286 whenever an 80287 ERROR// is
signaled. Since the 80286 BUSY// input remains active, the 80286 INTR 13 handler
i s g u a r a n t e e d t o e x e c u t e b e f o r e a n y o t h e r 8 0 2 8 7 i n s t r u c t i o n s m a y b e g i n . T h e
INTR 13 handler clears the BUSY// latch (via a wri te to a special 1/0 port) , thus
al lowing execut ion of 80287 inst ruct ions. . The INTR 13 handler then branches to
the NMI hand le r, whe re t he use r -defined numer i cs e r ro r hand le r r es i des i n PC
compatible systems.

The use o f an in ter rup t guarantees tha t an er ror f rom a coprocessor ins t ruc t ion
w i l l b e d e t e c t e d . L a t c h i n g B U S Y / / g u a r a n t e e s t h a t a n y c o p r o c e s s o r i n s t r u c t i o n
(excep t F IN IT, FSETPM, FCLEX) f o l l ow ing t he i ns t r uc t i on t ha t r a i sed t he e r ro r
wi l l no t be executed before the NMI hand ler is executed. Th is approx imates the
way the 8087-8088 error repor t ing in ter face works in the or ig ina l PC.

T h e 8 0 3 8 6 c a n u s e a P C / AT c o m p a t i b l e i n t e r f a c e t o c o m m u n i c a t e w i t h a n
80287/80387 provided that whi le BUSY// is latched act ive, the 80386 PEREQ input
is also act ivated, and the 80287/80387 coprocessor is disabled. An 80287 can be
disabled using either NPS1// or NPS2. . An 80387 should be disabled using its STEN
input (do not use the 80387 NPS1// or NPS2 inputs to disable the 80387 in th is
case) .

N o t e t h a t w h i l e P E R E Q i s a r t i fi c i a l l y a c t i v a t e d a s d e s c r i b e d a b o v e , t h e 8 0 3 8 6
may i ssue 1 /0 read cyc les fo r t he cop rocesso r. I t i s pe rm iss ib le fo r t he 80386
data p ins to float throughout such 1 /0 read cyc les .

5. Read Cycles Require Valid Data Bus Levels

T h e 8 0 3 8 6 r e q u i r e s t h a t a l l d a t a b u s p i n s b e a t a v a l i d l o g i c s t a t e (h i g h , o r
low) at the end of each read cycle, when READY// is asserted. The system MUST
be des igned to meet th is requ i rement . There fo re , DO NOT a l low any da ta l i nes
to be float ing when the read cycle completes.

N o t e : T h e I / O r e a d c y c l e s j u s t m e n t i o n e d i n t h e p r e v i o u s i t e m , (/ / 4) a r e f r e e
f rom th is requ i rement .

I m p l i c a t i o n s : - I f t h e d e v i c e b e i n g r e a d i s a 3 2 - b i t d e v i c e , s u c h a s a 3 2 - b i t
memory, the system should present 32 b i ts o f data to the 80386 even i f not a l l
of the 80386 byte enables are asserted.

I f t he dev i ce be ing read i s a 16 -b i t o r an 8 -b i t dev i ce , however, pu l l up res i s
tors can be used to guarantee va l id log ic leve ls on the upper data l ines which,
o t h e r w i s e , w o u l d b e fl o a t i n g . N o t e t h a t b u s c y c l e s t o 1 6 - b i t a n d 8 - b i t d e v i c e s
t y p i c a l l y i n c l u d e s e v e r a l w a i t s t a t e s , b u t a l w a y s c a l c u l a t e t h e e f f e c t s o f R - C
t ime cons tan ts to ensure the pu l lups w i l l d r i ve p roper log ic leve ls on to the bus
w i t h i n t he t ime requ i r ed .

6. I/O Permission Bitmap Must Reside Within TSS Offset OFFFFh

The 80386 requ i res t ha t t he en t i r e I /O pe rm iss ion b i tmap (i nc l ud ing t he t e rm i
na t i ng by te o f 'OFFh") , wh i ch i s pa r t o f an 80386 TSS , beg in a t an o f f se t no
la rge r t han ODFFFh . Th i s gua ran tees the en t i r e b i tmap (up to 8 k i l oby tes + 1

SPECIFICATION CHANGES 3

pcjs.org

I B M C O N F I D E N T I A L E R R A T A S U M M A R Y F O R 8 0 3 8 6 B - 1

te rmina to r by te o f OFFh) w i l l res ide a t TSS o f f se ts o f OFFFFh o r l ess . There
fo re , t he po in te r w i t h i n a 386 TSS ca l l ed B i t _Map_Of f se t (15 :0) mus t con ta in a
v a l u e o f O D F F F h o r l e s s u n d e r a l l c o n d i t i o n s , e v e n w h e n y o u i n t e n d t h e
Bi t_Map_Offse t to po in t beyond the l im i t o f the TSS i tse l f .

7. BS16// Must Not Be Asserted During Pipelined Bus Cycles

In data sheet F igures 5-16, 5-17, 5-19 and 5-22, the bus s ize 16 (BS16/ /) input
i s shown as "don ' t ca re " du r i ng T2P and T21 i n p ipe l i ned bus cyc les . Th i s i s
i nco r rec t . I n t hese figu res , BS16 / / shou ld be h igh du r i ng s ta tes T2P and T21 .
Tha t i s , once address p ipe l in ing has been reques ted by asser t ing nex t address
(NA//), BS16// must be negated for the remainder of the current bus cycle.

Impl icat ions: - Don' t assert BS16// is NA// has already been sampled asserted in
the current bus cyc le.

SPECIFICATION CHANGES 4

pcjs.org

I B M C O N F I D E N T I A L E R R A T A S U M M A R Y F O R 8 0 3 8 6 B - 1

3.0 ERRATA

1. Opcode Field Incorrect for FSAVE and FSTENV

PROBLEM

If an FSAVE or an FSTENV is executed in REAL mode or in VIRTUAL 8086 mode, the
Opcode field stored in memory is incorrect i f i t should have referred to a
coprocessor instruct ion which t ransfers e i ther two bytes or ten bytes f rom
memory to the coprocessor. The instruction and operand linear address fields
are correct ly stored. Note that coprocessor error-handl ing rout ines are the
only routines possibly affected. Also note that the problem does not occur in
PROTECTED mode programs (since no Opcode is saved by FSAVE or FSTENV in that
case).

WORKAROUND

In REAL mode or in VIRTUAL 8086 mode, the instruction linear address field can
be used to read the Opcode from memory. Note that the two bytes fetched need to
be swapped to yield the image that FSAVE and FSTENV normally stores. The fol
lowing is a possible fixup sequence:

F S T E N V (B X) ; s a v e e n v i r o n m e n t
M O V C X , (B X + 8) ; g e t l i n e a r I P < 1 9 : 1 6 >
A N D C X , 0 F 0 0 0 h ; t r e a t i t l i k e a s e l e c t o r
M O V S I , (B X + 6) ; g e t l i n e a r I P < 1 5 : 0 >
M O V F S , C X ; e s t a b l i s h a d d r e s s a b i l i t y
MOV ' CX,FS: (S I) ;ge t raw opcode va lue
X C H G C H , C L ; s w a p b y t e s a n d
A N D C X , 7 F F h ; m a s k o u t t o p b i t s
;CX now has the Opcode — store back if needed
M O V S I , (B X + 8) ; g e t O p c o d e w o r d
A N D S I , 0 F 8 0 0 h ; m a s k o u t t h e b a d
O R S I , C X ; m a s k i n t h e g o o d
M O V (B X + 8) , S I ; a n d s t o r e b a c k

The Opcode saved within the FSAVE FSTENV operand is in the following format:

1 0 9 8 7 6 5 4 3 2 1 0
I 1 I 1

l o w e r t h r e e b i t s m o d r / m b y t e
of ESC byte

2. Coprocessor Save/Restore Environment Not Always Restartable

PROBLEM

If either of the last two bytes of an FSAVE or an FSTENV operand are for any
reason not writeable, or either of the last two bytes of an FRESTOR or FLDENV
are for any reason not readable, the instruction is not restartable.

WORKAROUND

This does not affect typical systems with reasonably assigned page access
rights. In an obscure situation where this problem arises, a workaround is to
avoid having the operand of these instructions span a page boundary. This can
be accomplished by aligning these operands on any 128 byte boundary.

ERRATA 5

pcjs.org

I B M C O N F I D E N T I A L E R R A T A S U M M A R Y F O R 8 0 3 8 6 B - l

3. Wraparound Coprocessor Operands

PROBLEM

This can affect only situations where a coprocessor operand straddles the limit
of a segment of maximum size (i.e., OFFFFh for a 16-bit segment or OFFFFFFFFh
for a" 32-bit segment), or within 108 bytes of maximum size, thus wrapping around
to offset 0 of the segment. Since a wraparound situation is very abnormal for a
compiler or programmer to create, this does not affect a typical system.

Formally^ the 80386 architecture does not permit an operand (coprocessor operands included) to wrap around the end of a segment. If the user issues such an
instruction nonetheless in a Protected Mode system and the operand starts and
end in valid, present pages of a segment, BUT spans through an invalid or inac
cessible page the coprocessor may be put in an indeterminate state. In such
cases, an FCLEX or FINIT instruction needs to be executed before any other
coprocessor instruction is issued.
WORKAROUND
In Real Mode, this is not a problem since protection is not enabled. In Pro
tected Mode, this problem is avoided simply by not creating coprocessor operands
which wrap around the end of the segment, or by aligning the base of all seg
m e n t s o n p a g e b o u n d a r i e s . s

4. IRET to a TSS With Invalid Limit

PROBLEM

JJ" JS?6^0™5 a tanskvTit:? ^° a,TSS of Pr°Per descriptor type but invalid(too small) limit a Double Fault (exception 8) will result instead of an
Invalid TSS Fault (exception 10), as should result. Furthermore, if the Double
Anll ^F*2** the IDT is a trap Sate> a shutdown results. In a related topic,if the TSS Fault entry in the IDT is invalid for any reason (e.g., bad AR byte)
then instead of a Double Fault (exception 8), a shutdown results.

WORKAROUND
A working system, one that creates TSS segments of adequate size to hold '-the
Pr°"?s°r+Stf,e (4* bytes for the TSS of a 16-bit task, 104 bytes for the TSS ofa JZ-Dit task), will not encounter any problems here. A working system should

tion Jr°V S Valid gate (interrupt, trap or task gate) in the IDT for excep-

5. Single Stepping Repeated MOVS

PROBLEM

V ? R?£a*ted H0VS instruction is executed when single-stepping is enabled (TF =1 m EFLAGS register), a single step trap (exception 1) is taken every TWO
move steps, but should occur each move step. Also, if a data breakpoint is hit
during an odd iteration number of REP MOVS, the data breakpoint trap is not
taken until after the next even-numbered iteration. If the REP MOVS ends with
an odd number of iterations, and single-stepping or data breakpoints are
enabled, then a single-step trap or data breakpoint trap on the final iteration
will properly occur after the final, odd-numbered iteration.

ERRATA 6

pcjs.org

I B M C O N F I D E N T I A L E R R A T A S U M M A R Y F O R 8 0 3 8 6 B - l

WORKAROUND

When using the Trap Flag or data breakpoints with a debugger utility, this minor
variation of REP MOVS must be accepted, unless ah effort is made to have the
debugger emulate the REP MOVS rather than actually execute it.

6. Task Switch to VM86 Mode Fails to Update Prefetch Limit

PROBLEM

When a task switch to Virtual 8086 Mode is performed, the prefetch limit is not
updated to become OFFFFh, but instead, remains at its previous value.

WORKAROUND

Use the IRET instruction to transfer to Virtual 8086 Mode. Using IRET is the
preferred method for most instances, especially when the master OS dispatches a
Virtual 8086 Mode program, because IRET can cause the transition without a task
switch.

7. Wrong Register Size For Str ing Instruct ions (in Mixed 16/32-Bi t Addressing
Systems)

PROBLEM

I f c e r t a i n s t r i n g a n d l o o p i n s t r u c t i o n s a r e f o l l o w e d b y i n s t r u c t i o n s t h a t
e i t h e r :
• Use a d i f fe rent address s ize (that is , i f e i ther the s t r ing ins t ruc t ion or

the following instruction uses an address size prefix), or

• Reference the stack (e.g., PUSH/POP/CALL/RET) and the "B" bit in the SS
d e s c r i p t o r i s d i f f e r e n t f r o m t h e a d d r e s s s i z e u s e d b y t h e s t r i n g
ins t ruc t ions

then one or more of (E)CX, (E)SI, or (E)DI is not updated properly. The size of
the register (16 vs. 32) is taken from the fol lowing instruct ion rather than
from the s t r ing or loop inst ruct ion. This could resul t in updat ing only the
lower 16 bi ts of a 32-bi t register, or in updat ing al l 32 bi ts of a register
being used as 16 bi ts . The instruct ions and registers affected by th is are
listed below:

INSTRUCTION REGISTER(S)
MOVS
REP MOVS
STOS
INS
REP INS

(E)DI
(E)SI
(E)DI
(E)DI
(E)CX

WORKAROUND

No workaround is necessary if all codes are 16-bit or if all codes are 32-bit.
The problem only occurs if instructions with different address sizes are mixed
together, or if a code segment of one size is used with a stack segment of the
other size.

In a system which mixes address sizes, add a NOP after each of the above
ins t ruc t ions and ensure tha t the NOP has the same address s ize as the
s t r ing / loop (i .e . , i f t he s t r ing / loop ins t ruc t ion inc ludes an address p refix ,
place the same address prefix before the NOP; conversely, if the string/loop

ERRATA 7

pcjs.org

I B M C O N F I D E N T I A L E R R A T A S U M M A R Y F O R 8 0 3 8 6 B - l

instruction does not have an address prefix, do not place a prefix before the

8. FAR Jump Near Page Boundary in Virtual 86 Mode Paged Systems

PROBLEM

In Virtual 8086 Mode, if a direct FAR jump (Opcode EAh) instruction is located
at the end of a page (or within 16 bytes of the end) and the next page is not
cached in the TLB, the prefetcher limit is not set by the FAR jump instruction
to the end on the new code segment, but rather is left at the "end" of the old
code segment. This can allow execution beyond the end of the new segment
without triggering a segment limit violation. Or it can result in a spurious GP
fault if the old and new segments overlap; and a prefetch occurs beyond the
limit of the old segment.

Note that the prefetch limit is checked on the linear address, not by comoarine
I P t o O F F F F h . y w w j y - r i n s

WORKAROUND

Al l ex is t ing 8086 programs use only 16-b i t address ing, and thus, wi l l not
execute code at offsets greater than OFFFFh from the code segment base. Thus,
the lack of detection of walking off the end of a code segment should not impact
working 8086 programs.

A workaround to the spurious GP fault, if it occurs, is to simply IRET back to
the faul t ing instruct ion since the IRET wi l l correct ly set the prefetch l imit .
I f the faul t handler has contro l o f the s ingle-step funct ion, a very s imple
w o r k a r o u n d i s t o a t t e m p t t o s i n g l e - s t e p t h e f a u l t i n g i n s t r u c t i o n . I f t h e
s ing le -s tep succeeded, the hand le r cou ld c lear the fau l t , tu rn o f f s ing le -
s tepp ing and IRET. I f a GP fau l t occu r red a t tempt ing to s ing le -s tep the
instruction, a real GP fault is the cause.

I f the faul t handler cannot access the s ingle-stepping funct ion, i t s t i l l can
check for rea l GP fau l ts which must be emulated by the master OS. For
example, I/O instructions that need to be emulated, CLI/STI instructions that
mus t be emu la ted , e tc . I f none o f these fau l t s a re recogn ized , the fau l t
handler can assume this errata caused the GP fault and simply IRET back to'the
ins t ruc t i on .

9. .Page Fault Error Code On Stack Not Reliable

PROBLEM

When a Page Fault (exception 14) occurs, the three (3) defined bits in the error
code may be unreliable if a certain sequence of prefetch is happening at the
same time.

WORKAROUND

Although the page fault error code pushed onto the page fault handler's stackcan be unreliable, as described, the page fault l inear address stored in reg
ister CR2 is always correct. The page fault handler should refer to the page
faul t l inear address in CR2 to access the corresponding page table entry,
thereby determining whether the page fault was due to a page "not present" con
dition, or to a usage violation.

10. Certain I/O Addresses Incorrect When Paging Enabled

PROBLEM

ERRATA 8

pcjs.org

I B M C O N F I D E N T I A L E R R A T A S U M M A R Y F O R 8 0 3 8 G B - 1

When Paging is enabled, accessing I/O addresses in the range OOOOlOOOh-OOOOFFFFh
(4 K t h r o u g h 6 4 K - 1) o r a c c e s s i n g c o p r o c e s s o r p o r t s (I / O a d d r e s s e s
800000F8H-800000FFh) as a result of executing coprocessor Opcodes, can generate
incorrect I /O addresses i f paging is enabled, and the corresponding l inear
memory address is marked "present" and "dirty".

Furthermore, when paging has been enabled and is then turned off, paging trans
lation continues to occur for memory or I/O cycles (I/O as described above) to
linear addresses still stored in the TLB, but paging does not occur for linear
addresses that result in a TLB miss.

WORKAROUND

Unless paging is used, this item is not a problem. If paging is used but all
I/O ports are below OOOOlOOOh (as in a PC-DOS system), then I/O is no problem.

If paging is used and I/O ports exist in the range OOOOlOOOh-OOOOFFFFh, then
either have the memory pages at those linear addresses marked "not present" (to
avoid having those pages table entries cached in the TLB), or if "present", have
those pages mapped such that bits 12-15 of the physical address equal bits 12-15
o f the l i nea r address . A l te rna t i ve l y, reass ign any I /O po r t s i n the range
OOOOlOOOh-OOOOFFFFh to below OOOOlOOOh.

If paging is used and the coprocessor is also used, then have the memory page at
linear address 80000xxxh either marked "not present" (to avoid having that page
table entry cached in the TLB), or if "present", have the page mapped such that
bit 31 (the most significant bit) of that page's physical address is a 1.

To completely disable 80386 paging when paging was previously enabled, the 80386
TLB should be flushed immediately after resetting the PG bit in CRO. The TLB
can be flushed, you recall, by writing a Page Table Directory base address to
register CR3.

11. Wrong ECX Update With REP INS

PROBLEM

The ECX register (or CX in case of 16-bit operations) is not updated properly in
the case of a REP INS instruction (INPut string instruction with any REPeat
prefix) tha t i s fo l lowed by an ear ly -s ta r t ins t ruc t ion (e .g . , PUSH, POP or
memory reference instructions). After any REP-prefixed instruction, ECX is sup
posed to be 0 (null). But in the case of a REP INS instruction, ECX is not
updated correctly and is OFFFFFFFFh (or CX is OFFFFh in the case of 16-bit oper
ations). It should be noted that the REP INS executes the correct number of
iterations and EDI (or DI) is updated properly.

WORKAROUND

After a REP INS instruction, do not rely on ECX (or CS) being zero. Hence, a
new count (if any) should be MOVed into ECX, rather than being ADDed into ECX.

12. NMI Doesn't Always Bring Chip Out of Shutdown in Obscure Condition When Paging
Enabled

PROBLEM

If paging is enabled, and if the IDT gate for the Double Fault handler (the gate
for exception 8) points to the nul l descriptor slot, descriptor 0, in the GDT
(this would be a very strange way to set up a system), and a TLB miss occurs
when accessing the null descriptor slot, the chip enters shutdown as it should
in this case. In this specific case, however, an incoming NMI will not be able

ERRATA 9

pcjs.org

I B M C O N F I D E N T I A L E R R A T A S U M M A R Y F O R 8 0 3 8 6 B - 1

to bring the 386 out of shutdown. In this specific case, only reset will bring
the 386 out of shutdown.

WORKAROUND

Ensure that the IDT gate for the Double Fault Handler has a non-null selector
for CS and that SS of the destination level is also non-null.

13. HOLD Input During Protected Mode Interlevel IRET When Paging Is Enabled

PROBLEM

Under specific situations involving paging and the page privilege bits, the HOLD
input, and a RET or IRET instruction performing an interlevel return to level 3,
a problem can develop. These situations can be avoided by the workarounds
given.

The first situation, when the inner level stack (levels 0, 1 and 2) is not dword
al igned (or not word al igned in the case of a 16-bit (I)RET), requires that
several conditions occur simultaneously:

a. Paging must be enabled and the page table and directory entries for the
inner level stacks must be marked as supervisor access only.

b. The software must execute an interlevel RET or IRET to a Protected Mode
program at privilege level 3. An interlevel IRET to Virtual 8086 Mode does
not exhibit this problem. An inter-level RET or IRET to level 1 or 2 does
not exhibit this problem.

c. The inner level stack must be unaligned to a dword boundary (word boundary
for a 16-bit (I)RET).

When the first situation occurs, a page fault (exception 14) occurs spuriously,
indicating a page level protection violation during a "user" level read of the
inner level stack.

The second situation, whether or not the inner level stack is dword aligned (or
word aligned in the case of a 16-bit (I)RET), also requires that several condi
tions occur simultaneously:

a. Paging must be enabled and the page table and directory entries for the
inner level stacks must be marked as supervisor access only.

b. The software must execute an interlevel RET or IRET to a Protected Mode
program at privilege level 3. An interlevel IRET to Virtual 8086 Mode doesnot exhibit this problem. An inter-level RET or IRET to level 1 or 2 does
not exhibit this problem.

c. The bus HOLD input must be asserted during the read cycle which pops ESP (or
SP) off the inner stack as a result of a RET or IRET instruction.

When the second situation occurs, no exception is generated, but the processor
will drive an incorrect physical address during the read cycle in which SS is
popped from the inner level stack.

WORKAROUNDS

A software workaround to both situations is to mark all pages which contain the
inner level stacks as user readable. This prevents either the first or second
situation from occurring. The segmentation system can be used to prevent user
access to the linear addresses containing the innerlevel stacks.

ERRATA 10

pcjs.org

I B M C O N F I D E N T I A L E R R A T A S U M M A R Y F O R 8 0 3 8 6 B - 1

A workaround if not using the HOLD input is merely to keep the innerlevel
stacks aligned.

A Hardware workaround if using the HOLD input but not using the software
workaround above is the following:

Since the problem occurs during the first cycle after a locked cycle to read the
CS descriptor, a hardware workaround is to prevent a HOLD request from hittin*
the processor during bus cycle following a LOCKed cycle. This can be accom
plished with a latch that delays the LOCK// signal through a flip-flop clocked by
READY// to gate a HOLD request going into the chip. This will prevent a hold
request from getting to the 80386 until after the completion of the first cycle
after a LOCKed cycle. For the hardware workaround to be sufficient, all stacks
must be properly aligned and BS16// must be tied inactive.

14. Protected Mode LSL Instruction Cannot Precede PUSH/POP

PROBLEM

This item pertains only to Protected Mode. If the Protected Mode LSL instruc
tion (Load Segment Limit instruction, executable only in Protected Mode) is
immediately followed by certain instructions that perform a stack operation such
as PUSH or POP (see exact list below), the value of the (E)SP register may be
incorrect after the stack operation. Note that stack operations resulting from
interrupts or exceptions following LSL do update (E)SP correctly.

WORKAROUND

Do not immediately follow the Protected Mode LSL instruction with any of the
following stack operation instructions:

IRET (intratask)

POPA, POPF, POP (mem, reg, seg-reg)

RET (intrasegment or intersegment)

CALL (direct intrasegment, direct intersegment, indirect intrasegment via
reg)

ENTER, PUSHA, PUSHF, PUSH (mem, reg, seg-reg, immed)

Other instructions that operate on the stack (e.g., CALL indirect via memory,
and LEAVE) can be used safely after the Protected Mode LSL. Note that even if a
forbidden instruction immediately follows LSL, (E)SP may still be updated cor
rectly, since this problem is data-dependent and only occurs if the LSL opera
tion succeeded (i.e., if LSL set the ZF flag).

15. LSL/LAR/VERR/VERW Instructions Malfunction With Null Selector

PROBLEM

The Protected Mode instructions LSL, LAR, VERR or VERW executed with a null
selector (i.e., bits 15 through 2 of the selector set to zero) as the operand
will operate on the descriptor at entry 0 of the GDT instead of unconditionally
clearing the ZF flag.

WORKAROUND

The "nul l descriptor" (i .e., the descriptor at entry 0 of the GDT) should be
i n i t i a l i z e d t o a l l z e r o e s . I f t h e " n u l l d e s c r i p t o r " i s i n i t i a l i z e d t o a l l

ERRATA 11

pcjs.org

I B M C O N F I D E N T I A L E R R A T A S U M M A R Y F O R 8 0 3 8 6 B - 1

zeroes (i.e., an invalid value), the access made by these instructions to the
"nu l l desc r ip to r " w i l l f a i l (s ince these ins t ruc t ions on ly opera te on va l id
desc r i p to r s) . The fa i l u re w i l l be repo r ted w i t h ZF c l ea red , wh i ch i s t he
desired behavior when the operand is a null selector. Note that many systems
al ready have the "nu l l descr ip tor" in the GDT in i t ia l ized to zeroes, as is
desired for this workaround.

16. "Not Present" LDT in VM86 Task Raises Wrong Exception

PROBLEM

A task switch to a VM86 task that has a "not present" LDT descriptor will cause
a Segment Not Present fault (exception 11) rather than an Invalid TSS fault
(exception 10).

WORKAROUND

The simplest workaround is to use a NULL selector for the LDT in a VM86 task
since the LDT is not used when executing in Virtual 86 mode. However, if an
interrupt or exception occurs, the processor will switch out of Virtual 86 modeinto protected mode to handle the interrupt, without switching tasks. Thus, the
operat ing system should be structured so that al l Interrupt and Trap gates
active when executing a VM86 task reference segments in the GDT.

If an LDT must be supplied for a task that executes in Virtual 86 mode, there
are several easy workarounds. One is to ensure that LDT segments are never
marked "not present" in their segment descriptors. Paging is not affected by
this errata. LDT segments can be paged out and marked "not present" in their
page descriptors in systems which use paging.

. If the operating system must mark the LDT segment descriptor "not present", the
"not present" (exception 11) handler must be able to handle the case of a "not
present" LDT during a task switch. The "not present" exception is reported with
the LDT selector as the error code and with the VM bit set to 1 in the EFLAGS
image of the caller. Since a VM86 task cannot normally raise a "not present"
fault, the "not present" exception handler can detect this case by checking if
the stored VM bit is set. If so, the fault can be redirected to the TSS Fault
handler.

17. Coprocessor Instructions Crossing Page/Segment Boundaries

PROBLEM

If the first byte of a coprocessor (ESC) instruction is located on the last byte
of a page or segment, and the second byte is located on a page or segment which
would create a fault, then the processor will hang when it tries to signal the
fault. The processor remains stopped until an interrupt, NMI or RESET occurs.
This errata appl ies only to coprocessor inst ruct ions in systems which use
virtual memory.

WORKAROUND

In Virtual memory systems, the time-slice or watchdog timer provides an easy
workaround, since a timer interrupt will always cause the processor to begin
interrupt processing. The timer routine should test the following conditions todetermine if this errata was encountered.
• The saved CS:EIP must point within 8 bytes of the end of a page

• The last byte within the page must contain an ESC Opcode

ERRATA 12

pcjs.org

I B M C O N F I D E N T I A L E R R A T A S U M M A R Y F O R 8 0 3 8 6 B - 1

• All bytes between the saved CSrEIP and the ESC Opcode must contain valid
prefix Opcodes (segment override 26h, 2Eh, 36h, 3Eh, 64h, 65h, address size
override 67h, operand size override 66h)

• The next page is not present, or not a ossable

If all four conditions are true, then the timer routine can assume this errata
was encountered, and signal a page fault, which will clear the condition. This
workaround should be placed in the Operating System, so that applications pro
grams are unaffected.

18. Double Page Faults Do Not Raise Double Fault Exception

PROBLEM

If a second page fault occurs while the processor is attempting to enter the
serv ice rout ine for the first , then the processor wi l l invoke the page faul t
(exception 14) handler a second time, rather than the double fault (exception 8)
handler. A subsequent fault, though, will lead to shutdown.

WORKAROUND

No workaround is necessary in a working system.

19. Maximum Sized Segments Need Alignment

PROBLEM

Maximum sized segments (segments with maximum possible limit of FF FFh) that do
. no t s ta r t a t doub le wo rd bounda ry, wou ld c rea te segmen t - l im i t v i o l a t i on

(GP-fault, IDT entry #13) at the very beginning of segment execution. This
happens because the prefetcher, which always fetches double words from even
boundaries, detects a match with the segment limit (which is just one less than
the segment base due to wraparound) in the very first prefetch cycle.

WORKAROUND

If maximum sized segment is being used, make sure it is page-aligned; i.e.,
least significant 3 nibbles (12 bits) of the segment base should be zero. Fix
for this problem would require tricky logic changes, hence, it has been decided
that instead of trying to fix it following application note should be added:

Maximum sized segments should be page aligned

20. CR3/TRx Move Corrupts LIP (Linear Instruction Pointer)

PROBLEM

A CR3 or TRx read causes contention on an internal bus resulting in bad update
of LIP (linear Instruction Pointer) which is updated at the end of every sequen
t ia l inst ruct ion using the current inst ruct ion length. LIP is used for s imul
taneous compar ison wi th the four debug reg is ters (DRO-3) fo r b reakpo in t
detection. As a result, bad LIP can cause spurious breakpoints.

WORKAROUND

To ensure nroper operation, disable breakpoints, follow any move into CR3 or TRx
by a jump which would load LIP with the right linear address of the target and
enable breakpoints.

ERRATA 13pcjs.org

I B M C O N F I D E N T I A L E R R A T A S U M M A R Y F O R 8 0 3 8 6 B - 1

4.0 DESIGN NOTES

1. Read cycles require valid data bus levels

ta£ £rorf3l6"eadPry"«a"0n '"^ 5 f°r imP<>rtant °™ °* «""»« s""-
2. Use of ESP as a base register with CALL, PUSH and POP instructions

This clarifies how ESP behaves with instructions that implicit ly reference the
stack and explicitly reference another location in memory using ESP as a base
reg i s te r.

Explicit Memory
R e f e r e n c e u s e s E S P v a l u e

I n s t r u c t i o n t h e E S P v a l u e . . u s e d a s b a s e

C A L L - i n d i r e c t - t h r u - m e m o r y b e f o r e o l d E S P
decrementing

P U S H - f r o m - m e m o r y b e f o r e
decrementing

old ESP

P O P - t o - m e m o r y a f t e r
incrementing

new ESP

T h i s i s c o n s i s t e n t i n t h a t t h e C A L L - i n d i r e c t - t h r u - m e m o r y a n d t h e
PUSH-from-memory both use the same ESP value.

Furthermore, the relation between PUSH-from-memory and POP-to-memory is such
that is allows the instruction sequence:

PUSH (ESP+n)
POP (ESP+n)

locationthe desirable Pr°Perty of both instructions referencing the same memory

3. Use of Code Breaks to Debug 86/286 Operating Systems

The RF bit in the EFLAGS register is cleared by a 16-bit IRET, making it diffi
cult to use the on-chip debug registers to set code breakpoints to debug 16-bit
operating systems. Data breakpoints work fine in all cases, and code break-
f?1^! ^°J*f ine as lon8 as a11 interrupt handlers are 32-bits and return withJ2-b i t IRETs or task swi tches. In 16-b i t env i ronments, sof tware debuggers
should use the CC (single byte INT 3 instruction) to place software breakpoints
i n c o d e . r

DESIGN NOTES 14

pcjs.org

I B M C O N F I D E N T I A L E R R A T A S U M M A R Y F O R 8 0 3 8 6 B - 1

4. Use of ESP in 16-Bi t Code wi th 32-Bi t Interrupt Handlers

W h e n a 3 2 - b i t I R E T i s u s e d t o r e t u r n t o a n o t h e r p r i v i l e g e l e v e l , a n d t h e o l d
leve l uses a 4G s tack (B - l) wh i l e t he new leve l uses a 64K s tack (B -0) , t hen
only the lower word of ESP is updated. The upper word remains unchanged. This
is fine for pure 16-b i t code, as wel l as pure 32-b i t code. However, when 32-b i t
in ter rupt handlers are present , 16-b i t code should avo id any dependence on the
upper word of ESP. No changes are necessary in exist ing 16-bi t code, s ince the
on ly way to access ESP in USE16 segments is th rough the 32-b i t address s ize
p r e fi x .

DESIGN NOTES 15pcjs.org

