
80386-B1
STEPPING INFORMATION

REVISION: DECEMBER 17, 1986

This document contains specificat ion changes, errata, and design notes.

Specificat ion changes l is ted are permanent; the 80386 data sheet wi l l be
modified to incorporate the changes.

The errata i tems descr ibed here in wi l l be corrected on future steppings of
the 80386.

NOTES:

80386-B1 component identifier readable in DH after reset: 03H
80386 -B1 rev i s i on i den t i fie r r eadab le i n DL ' a f t e r r ese t : 03H

At th is t ime, BI s tepping par ts are ident ified wi th one of the marks shown
below:

i i i i

i i A80386-16 i i A80386-20
i i S40344 i i S40362
i i (FPO number) i i (FPO number)
i i m c i ' 8 5 ' 8 6 i i m c i ' 8 5 '86

i i

i i A80386 ES BI
i i
i i
i i m c i ' 8 5 ' 8 6

80386 I n t e l C o r p o r a t i o n P r o p r i e t a r y

pcjs.org

Specificat ion Changes

The specification changes numbered 1 through 4 for previous versions of the
80386 have now been incorporated in the latest version of the 80386 datasheet,
version -002. The remaining specificat ion changes, here, are now renumbered
beginning wi th 1.

1. NT Bit and IOPL Bits in Real Mode

The NT bit and IOPL bits of the FLAGS register can be set in Real Mode of
the 80386. The exact behavior of these bits in 80386 Real Mode was not
previously documented. Note that in 80286 Real Mode, these bits can not
be set (they always remain 0 in 80286 Real Mode).

2. Coprocessor Data Pointer Stored by FSAVE/FSTENV Instruct ions is Undefined
af ter Non-memory Instruct ions

The contents of the operand address field resulting from a FSTENV or
FSAVE are undefined i f the preceeding coprocessor ar i thmet ic inst ruct ion
did not have a memory operand. The exact contents of the operand address
fie ld i n t h i s case was spec i fied p rev i ous l y. Th i s now confi rms t ha t t he
operand address fie ld is undefined in that case.

3 . B i t S t r i n g I n s e r t a n d E x t r a c t I n s t r u c t i o n s R e m o v e d

Since the 80386 has unique and powerful 64-bi t Double Shif t instruct ions,
a n d f a s t m u l t i - b i t s h i f t a n d r o t a t e i n s t r u c t i o n s , t h e " B i t S t r i n g I n s e r t "
and "B i t S t r i ng Ex t rac t " i n s t r uc t i ons we re r emoved . The i nse r t / ex t r ac t
comp lex i ns t r uc t i ons d i d no t p rov i de an add i t i ona l benefi t t ha t f u l l y
j us t i fied i nc lud ing them in 80386 s i l i con and a l l f u tu re compa t ib le
processors . A rev iew conc luded that the 80386 user obta ins fu l l
pe r fo rmance in b i t s t r ing man ipu la t ions us ing o ther power fu l i ns t ruc t ions
such as 64 -b i t Doub le Sh i f t , and o the r mu l t i - b i t sh i f t / r o t a te
i n s t r u c t i o n s . T h e s e i n s t r u c t i o n s s u p p o r t e x t r e m e l y f a s t m a n i p u l a t i o n o f
genera l unal igned b i t s t r ings of any length, by processing them in
32-b i t chunks .

4. ERROR* Input Difference - Effect on PC/AT Compatible Coprocessor
Connection

On the 80386, latching the level of BUSY# when ERROR# becomes active will
cause FST and FSTP instructions which get errors to hang the 80386. On
the 80286, latching BUSY# when ERROR# becomes active (as performed in the
PC/AT) did not cause any problems.

Implications: The PC/AT uses a non-standard scheme to report 80287
errors to the 80286 (a scheme compatible with the non-standard scheme
used to report 8087 errors to the 8088 in the original PC) . The scheme
used in the PC/AT works because a separate data channel is used by the
80286 to communicate with the 80287. However, the 80386 communicates
with the math coprocessor using microcode loops. Therefore, PC/AT-
compatible 80386 systems using an 80287 or 80387 numerics coprocessormust careful ly fo l low the recommendat ion below when repl icat ing the
PC/AT's non-standard method of report ing coprocessor errors.

How to properly repl icate the PC/AT coprocessor error-report ing scheme:
A workaround exists when repl icat ing the PC/AT coprocessor interface in
80386-based systems. Note that this workaround needs to be incorporated
for the non-standard PC/AT scheme; the standard recommended 80386/80387
connect ion funct ions proper ly and the 80386 implementat ion wi l l not be
a l te red. To unders tand the workaround, le t us rev iew the AT in ter face.
In the PC/AT, the ERROR# input to the 80286 is t ied inactive (high)
permanently. The ERROR# output of the 80287 is t ied to an interrupt port
(IRQ13) . Th is in ter rupt rep laces er ror s igna l l ing v ia the 80286 's ERRORf
input. To guarantee (in the case of an 80287 error) that INTR 13 wi l l be
serv iced pr io r to the execut ion o f any fu r ther 80287 ins t ruc t ions , an

80386 I n t e l C o r p o r a t i o n P r o p r i e t a r y 2 -

pcjs.org

edge-tr iggered flip-flop latches BUSY# using ERROR# as a clock. The
output of this latch is ORed with the BUSY# output of the 80287 and
drives the BUSY# input of the 80286. This PC/AT scheme effect ively
delays BUSY* deactivation at the 80286 whenever an 80287 ERROR* is
signalled. Since the 80286 BUSY* input remains active, the 80286 INTR 13
handler is guaranteed to execute before any other 80287 instruct ions may
begin. The INTR 13 handler clears the BUSY* latch (via a write to a
spec ia l I /O po r t) t hus re -a l l ow ing execu t i on o f 80287 i ns t ruc t i ons . The
INTR 13 handler then branches to the NMI handler, where the user-defined
numerics error handler resides in PC-compatible systems.

The use of an interrupt guarantees that an error from a coprocessor
ins t ruc t ion w i l l be detec ted. La tch ing BUSY* guarantees tha t any
coprocessor instruct ion (except FINIT, FSETPM, FCLEX) fol lowing the
ins t ruc t ion that ra ised the er ror w i l l no t be executed before the NMI
handler is executed. This approximates the way the 8087-8088 error-
repor t ing in te r face works in the o r ig ina l PC.
The 80386 can use a PC/AT-compatible interface to communicate with an
80287/80387 provided that while BUSY* is latched active, the 80386 PEREQ
input is a lso act ivated, and the 80287/80387 coprocessor is d isab led. An
80287 can be disabled using either.NPS1* or NPS2. An 80387 should be
disabled using its STEN input (do not use the 80387 NPS1* or NPS2 inputs
to disable the 80387 in this case) . Note that while PEREQ is
ar t ific ia l ly ac t iva ted as descr ibed above, the 80386 may issue I /O read
cyc les fo r the coprocessor. I t i s pe rm iss ib le fo r the 80386 da ta p ins to
float throughout such I /O read cyc les.

5. Read Cycles Require Val id Data Bus Levels

The 80386 requires that a l l data bus p ins be at a val id logic state (h igh
or low) at the end of each read cycle, when RE.ADY# is asserted. The
system MUST be designed to meet this requirement! Therefore, do NOT
allow any data l ines to be floating when the read cycle completes. NOTE:
The I /O read cycles just ment ioned in the previous i tem, i tem 4, are f ree
f rom th is requ i rement .

Impl icat ions: I f the dev ice be ing read is a 32-b i t dev ice, such as a
32-bit memory, the system should present 32-bits of data to the 80386
even i f not al l of the 80386 byte enables are asserted.

I f the dev ice be ing read is a 16-b i t or an 8-b i t dev ice, however, pu l lup
resistors can be used to guarantee val id logic levels on the upper data
l i nes , wh ich o the rw ise wou ld be floa t ing . No te tha t bus cyc les to 16 -b i t
and 8 -b i t dev ices t yp ica l l y inc lude severa l wa i t s ta tes , bu t a lways
ca lcu la te the e f fec ts o f R-C t ime constants to ensure the pu l lups w i l l
d r ive proper log ic leve ls on to the bus w i th in the t ime requ i red .

6. I/O Permission Bitmap Must Reside Within TSS Offset OFFFFh

The 80386 requi res that the ent i re I /O permiss ion b i tmap (inc luding the
terminating byte of "OFFh"), which is part of an 80386 TSS, begin at an
offset no larger than ODFFFh. This guarantees the ent i re bi tmap (up to 8
k i lobytes + 1 terminator byte of OFFh) wi l l res ide at TSS offsets of
OFFFFh or less. Therefore, the pointer wi th in a 386 TSS-cal led
Bit_Map_Offset(15:0) must contain a value of ODFFFh or less under al l
condit ions,.even when you intend the Bit_Map_Offset to point beyond the
l i m i t o f t h e T S S i t s e l f .

7. BS16* Must Not Be Asserted During Pipelined Bus Cycles

In datasheet figures 5-16, 5-17, 5-19, and 5-22, the bus size 16 (BS16#)
input is shown as "don't care" during T2P and T21 in pipelined bus
c y c l e s . T h i s i s i n c o r r e c t . I n t h e s e fi g u r e s , B S 1 6 * s h o u l d b e h i g h
during states T2P and T21. That is, once address pipel in ing has been
requested by asserting next address (NA*), BS16* must be negated for the
remainder of the current bus cycle.

80386 I n t e l * C o r p o r a t i o n P r o p r i e t a r y

pcjs.org

Impl icat ions: Don' t assert BS16* i f NA* has already been sampled
asserted in the current bus cycle.

80386 I n t e l C o r p o r a t i o n P r o p r i e t a r y

pcjs.org

FSTENV [BX]
MOV CX,[BX+8]
.AND CX,0F000h
MOV SI,[BX+6]
MOV FS,CX
MOV CX,FS: [SI]
XCHG CH,CL
AND CX,7FFh

E r r a t a

1. Opcode Field Incorrect for FSAVE and FSTENV

Problem: If an FSAVE or an FSTENV is executed in REAL mode or in VIRTUAL
8086 mode, the opcode field stored in memory is incorrect i f i t should
have re fer red to a coprocessor ins t ruc t ion wh ich t rans fers e i ther two
bytes or ten bytes f rom memory to the coprocessor. The instruct ion and
ope rand l i nea r add ress fie l ds a re co r rec t l y s t o red . No te t ha t
coprocessor e r ro r -hand l ing rou t ines a re the on ly rou t ines poss ib ly
affected. Also note that the problem does not occur in PROTECTED mode
programs (since no opcode is saved by FSAVE or FSTENV in that case) .
Workaround: In REAL mode or in VIRTUAL 8086 mode, the instruction linear
address field can be used to read the opcode from memory. Note that the
two bytes fetched need to be swapped to yield the .image that FSAVE and
FSTENV normal ly s tores . The fo l lowing is a poss ib le fixup sequence.

;save environment
;get l inear IP<19:16>
; t r e a t i t l i k e a s e l e c t o r
;ge t l inear IP<15:0>
; e s t a b l i s h a d d r e s s a b i l i t y
;get raw opcode value
;swap bytes and
; mask out top bits

;CX now has the opcode — store back if needed
M O V S I , [B X + 8] ; g e t o p c o d e w o r d
A N D S I , 0 F 8 0 0 h ; m a s k o u t t h e b a d
O R S I , C X ; m a s k i n t h e g o o d
M O V [B X + 8] , S I ; a n d s t o r e b a c k

The opcode saved within the FSAVE FSTENV operand is in the following
f o r m a t :

1 0 9 8 7 6 5 4 3 2 1 0
I I I I

l o w e r t h r e e b i t s m o d r / m b y t e
of ESC byte

2. FSAVE, FRESTOR, FSTENV and FLDENV Anomolies with Paging

Problem: If either of the last two bytes of an FSAVE or an FSTENV
operand are for any reason not wr i teable, or e i ther of the last two bytes
of an FRESTOR or FLDENV are for any reason not readable, the instruction
i s n o t r e s t a r t a b l e .

Workaround: Th is does not not a ffec t typ ica l systems wi th reasonably-
ass igned page access r ights. In an obscure s i tuat ion where th is problem
arises, a workaround is to avoid having the operand of these instruct ions
span a page boundary. This can be accomplished by aligning these
operands on any 128-byte boundary.

3. Wraparound Coprocessor Operands

Problem: This can affect only s i tuat ions where a coprocessor operand
straddles the l imit of a segment of maximum size (i.e. OFFFFh for a 16-
bit segment or OFFFFFFFFh for a 32-bit segment) or within 108 bytes of
maximum size, thus wrapping around to offset 0 of the segment. Since
a wraparound situation is very abnormal for a compiler or programmer to
c rea te , th is does no t a f fec t a typ ica l sys tem.

Formal ly, the 80386 archi tecture does not permit an operand (coprocessor
operands included) to wrap around the end of a segment. I f the user
issues such an instruction nonetheless in a Protected Mode system, and
the operand starts and ends in valid, present pages of a segment, BUT
spans through an invalid or inaccessible page, the coprocessor may be put

80386 In te l Co rpo ra t i on P rop r i e t a r y

pcjs.org

in an indeterminate state. In such cases, an FCLEX or FINIT inst ruct ion
needs to be executed before any other coprocessor instruct ion is issued.

Workaround: In Real Mode, th is is not a problem since protect ion is not
enabled. In Protected Mode, th is problem is avoided s imply by not
creating coprocessor operands which wrap around the end of the segment,
or by aligning the base of all segments on page boundaries.

4 . IRET to TSS wi th L imi t too Smal l

Problem: If an IRET performs a task switch to a TSS of proper descriptor
t ype bu t i nva l i d (t oo sma l l) l im i t , a Doub le Fau l t (excep t i on 8) w i l l
resu l t ins tead o f a Inva l id TSS Faul t (except ion 10) as shou ld resu l t .
Furthermore, i f the Double Faul t entry in the IDT is a t rap gate, a
shu tdown resu l t s . In a re la ted top ic , i f t he TSS Fau l t en t ry in the IDT
is inval id for any reason (e.g. bad AR byte), then instead of a Double
Faul t (except ion 8) , a shutdown resu l ts .

Workaround: A working system, one that creates TSS segments of adequate
size to hold the processor state (44 bytes for the TSS of a 16-bi t task,
104 bytes for the TSS of a 32-bit task), wi l l not encounter any problems
here . A work ing sys tem shou ld a lso p rov ide a va l id ga te (in te r rup t ,
t rap, or task gate) in the IDT for except ion 8.

5 . S ing le -Stepp ing F i rs t I te ra t ion o f REP MOVS

Problem: I f a REPeated MOVS instruct ion is executed when single-stepping
is enabled (TF « 1 in EFLAGS register), a single-step trap (except ion 1)• is taken every two move steps, but should occur each move step. Also, i f
a data breakpoint is hit during a odd iteration number of REP MO.VS, the
data breakpoint t rap is not taken unt i l a f ter the next even-numbered
iterat ion. I f the REP MOVS ends with an odd number of i terat ions, and
s ing le-s tepp ing or data breakpo in ts are enab led, then a s ing le-s tep t rapo r d a t a b r e a k p o i n t t r a p o n t h e fi n a l i t e r a t i o n w i l l p r o p e r l y o c c u r a f t e r
t he fina l , odd -numbered i t e ra t i on .

Workaround: When using the Trap Flag or data breakpoints with a debugger
ut i l i ty, this minor variat ion of REP MOVS must be accepted, unless an
effort is made to have the debugger emulate the REP MOVS rather than
a c t u a l l y e x e c u t e i t .

6 . Task Swi tch to Vi r tua l 8086 Mode Doesn' t Update Prefetch L imi t

Problem: When a task switch to Virtual 8086 Mode is performed, the
prefetch l imit is not updated to become OFFFFh, but instead remains at
i t s p r e v i o u s v a l u e .

Workaround: Use the IRET instruct ion to t ransfer to Vi r tual 8086 Mode.
Using IRET is the preferred method for most instances, especial ly when
the master OS dispatches a Virtual 8086 Mode program, because IRET can
cause the t rans i t ion w i thout a task swi tch .

7 . Wrong R eg i s t e r S i ze f o r S t r i ng I ns t r uc t i ons i n M i xed 16 /32 -b i t
Addressing Systems
Prob lem: I f ce r t a i n s t r i ng and l oop i ns t r uc t i ons a re f o l l owed by
i n s t r u c t i o n s t h a t e i t h e r :

1) u s e a d i f f e r e n t a d d r e s s s i z e (t h a t i s , i f e i t h e r t h e s t r i n g
ins t ruc t ion o r the fo l l ow ing ins t ruc t ion uses an address s i ze
p r e fi x) , o r

2) reference the stack (e.g. PUSH/POP/CALL/RET) and the "B" bit in the
SS descr ip tor is d i f ferent f rom the address s ize used by the s t r ing
i n s t r u c t i o n s ,

then one or more of (E)CX, (E)SI, or (E)DI is not updated proper ly. The

80386 In te l Co rpo ra t i on P rop r i e t a r y

pcjs.org

s ize o f the reg is te r (16 vs . 32) i s taken f rom the . fo l low ing ins t ruc t ion
r a t h e r t h a n f r o m t h e s t r i n g o r l o o p i n s t r u c t i o n . T h i s c o u l d r e s u l t i n
updat ing on ly the lower 16 b i ts .o f a 32-b i t reg is te r, o r in updat ing a l l
32 b i ts o f a reg is ter be ing used as 16 b i ts . The ins t ruc t ions and
reg i s te rs a f fec ted by th i s a re l i s ted be low :

I n s t r u c t i o n Reg is te r (s)
MOVS (E)DI
REP MOVS (E)SI
STOS (E)DI
INS (E)DI
REP INS (E)CX

Workaround: No workaround is necessary i f a l l code is 16-b i t or i f a l l
c o d e i s 3 2 - b i t . T h e p r o b l e m o n l y o c c u r s i f i n s t r u c t i o n s w i t h d i f f e r e n t
address sizes are mixed together, or if a code segment of one size is
used with a stack segment of the other size.

In a system which mixes address sizes, add a NOP after each of the above
instructions and ensure that the NOP has the same address size as the
s t r i n g / l o o p (i . e . , i f t h e s t r i n g / l o o p i n s t r u c t i o n i n c l u d e s a n a d d r e s s
prefix, p lace the same address prefix before the NOP; conversely, i f the
st r ing/ loop inst ruct ion does not have an address prefix, do not p lace a
prefix before the NOP).

8. FAR Jump Located Near Page Boundary in Virtual 8086 Mode Paged Systems

Problem: In Virtual 8086 Mode, if a direct FAR jump (opcode EAh)
inst ruct ion is located at the end of a page (or wi th in 16 bytes of the
end), and the next page is not cached in the TLB, the pref etcher l imit is
not set by the FAR jump instruction to the "end" on the new code segment,
but ra ther is le f t a t the "end" o f the o ld code segment . Th is can a l low
execution beyond the end of the new segment without triggering a segment
l i m i t v i o l a t i o n . O r i t c a n r e s u l t i n a s p u r i o u s G P f a u l t i f t h e o l d a n d
new segments overlap, and a prefetch occurs beyond the l imit of the old
segment.
Note that the prefetch l imi t is checked on the l inear address, not by
comparing IP to OFFFFh.
Workaround: Al l ex is t ing 8086 programs use only 16-bi t addressing, and
thus wil l not execute code at offsets greater than OFFFFh from the code
segment base. Thus the lack of detect ion of walking off the end of a
code segment should not impact working 8086 programs.

A workaround to the spur ious GP faul t , i f i t occurs, is to s imply IRET
back t o t he f au l t i ng i ns t r uc t i on , s i nce t he IRET w i l l co r rec t l y se t t he
p r e f e t c h l i m i t . I f t h e f a u l t h a n d l e r h a s c o n t r o l o f t h e s i n g l e - s t e p
funct ion, a very s imple workaround is to at tempt to s ing le-s tep the
f a u l t i n g i n s t r u c t i o n . I f t h e s i n g l e - s t e p s u c c e e d e d , t h e h a n d l e r c o u l d
c l e a r t h e f a u l t , t u r n o f f s i n g l e - s t e p p i n g , a n d I R E T. I f a G P f a u l t
occu r red a t t emp t i ng t o s i ng le -s tep t he i ns t ruc t i on , a " rea l " GP fau l t i s
the cause.

I f t h e f a u l t h a n d l e r c a n n o t a c c e s s t h e s i n g l e - s t e p p i n g f u n c t i o n , i t s t i l l
can check for "real" GP faults which must be emulated by the master OS,
for example, I /O instruct ions that need to be emulated, CLI /STI
ins t ruc t ions tha t mus t be emu la ted , e tc . I f none o f these fau l t s a re
recognized, the fault handler can assume this errata caused the GP fault
and simply IRET back to the instruct ion.

9. Page Faul t Error Code on Stack Not Rel iable

Problem: When a Page Fault (except ion 14) occurs, the 3 defined bi ts in
the error code may be unrel iable i f a certain sequence of prefetch is
happening at the same time.

6 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y 7

pcjs.org

Workaround: Although the page fault error code pushed onto the page
fau l t hand ler ' s s tack can be unre l iab le , as descr ibed, the page fau l t
l inear address s tored in reg is ter CR2 is a lways cor rec t . The page fau l t
handler should refer to the page fault l inear address in CR2 to access
the corresponding page table entry and thereby determine whether the page
faul t was due to a page "not present" condi t ion, or to a usage v io lat ion.

10. Certain I /O Addresses Incorrect when Paging is Enabled

Problem: When Paging is enabled, accessing I/O addresses in the range
OOOOlOOOh-OOOOFFFFh (4K through 64K-1) or accessing coprocessor ports
(I/O addresses 800000F8h-800000FFh) as a. result of executing coprocessor
opcodes, can generate incorrect I /O addresses i f paging is enabled and
the corresponding l inear memory address is marked "present" and "dir ty."

Furthermore, when paging has been enabled and is then turned off, paging
translat ion cont inues to occur for memory or I /O cycles (I /O as descr ibed
above) to l inear addresses st i l l s tored in the TLB, but paging does not
occur for l inear addresses that resul t in a TLB miss.

Workaround: Un less pag ing is used, th is i tem is no t a p rob lem. I f
paging is used but all I/O ports are below OOOOlOOOh (as in a PC-DOS
system), then I/O is no problem.
If paging is used and I/O ports exist in the range OOOOlOOOh-OOOOFFFFh,
then either have the memory pages at those linear addresses marked "not
present" (to avoid having those pages table entr ies cached in the TLB),
or i f "present," have those pages mapped such that bits 12-15 of the
phys i ca l add ress equa l b i t s 12 -15 o f t he l i nea r add ress . A l t e rna t i ve l y,
re-assign any I/O ports in the range OOOOlOOOh-OOOOFFFFh to below
OOOOlOOOh.

If paging is used and the coprocessor is also used, then have the memory
page at l inear address 80000xxxh either marked "not present" (to avoid
having that page table entry cached in the TLB), or i f "present," have
the page mapped such that b i t 31 (the most s ignificant b i t) o f that
page's physical address is a 1.

To completely disable 80386 paging when paging was previously enabled,
the 80386 TLB should be flushed immediately after resett ing the~PG bit in
CRO. The TLB can be flushed, you recall, by writing a Page Table
Directory base address to register CR3.

11. Wrong ECX Update by REP INS

Problem: The ECX register (or CX in case of 16-bi t operat ions) is not
updated properly in the case of a REP INS instruct ion (INPut str ing
ins t ruc t ion w i th any REPeat p refix) tha t i s fo l l owed by an ea r l y -s ta r t
ins t ruct ion (e .g . PUSH, POP or memory re ference ins t ruct ions) . Af ter any
REP-pref ixed instruction, ECX is supposed to be 0 (null) . But in the
case of a REP INS instruction, ECX is not updated correctly and is
OFFFFFFFFh (or CX is OFFFFh in case of 16-bit operations) . It should be
noted that the REP INS executes the correct number of iterations and EDI
(or DI) is updated proper ly.

Workaround: After a REP INS instruction, do not rely on ECX (or CX)
being zero. Hence, a new count (if any) should be MOVed into ECX, rather
than being ADDed into ECX.

12. NMI Doesn't Always Bring Chip Out of Shutdown in Obscure Condition with
Paging Enabled
Problem: I f paging is enabled, and i f the IDT gate for the Double Faul t
hand le r (t he ga te fo r excep t ion 8) po in ts to the nu l l desc r ip to r s lo t ,
descriptor 0, in the GDT (this would be very a strange way to set up a
system), and a TLB miss occurs when accessing the null descriptor slot,
t he ch ip en te rs shu tdown as i t shou ld i n t h i s case . I n t h i s spec i fic

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y 8

pcjs.org

case however, an incoming NMI will not be able to bring the 386 out of
s h u t d o w n . I n t h i s s p e c i fi c c a s e , o n l y r e s e t w i l l b r i n g t h e 3 8 6 o u t o f
shutdown.

Workaround: Ensure that the IDT gate for the Double Fault Handler has
a non-nul l se lectors for CS, and that SS of the dest inat ion leve l is a lso
n o n - n u l l .

13. HOLD Input During Protected Mode Interlevel IRET when Paging is Enabled

Prob lem: Under spec ific s i tua t ions invo lv ing pag ing and the page
priv i lege bi ts, the HOLD input, and a RET or IRET instruct ion performing
an in te r - leve l re tu rn to leve l 3 , a p rob lem can deve lop . These
situations can be avoided by the workarounds given.

The fi rs t s i tua t ion , when the inner leve l s tack (leve ls 0 , 1 , and 2)
is not dword al igned (or not word al igned in the case of a 16-bit
(I)RET) , requ i res tha t severa l cond i t ions occur s imu l taneous ly :

1) Paging must be enabled, and the page table and directory entr ies
for the inner level stacks must be marked as supervisor access only.

2) The software must execute an inter-level RET or IRET to a
Pro tec ted Mode program a t p r iv i lege leve l 3 . An in te r - leve l IRET to
Vi r tua l 8086 Mode does not exh ib i t th is prob lem. An in ter - leve l RET
or IRET to level 1 or 2 does not exhibit this problem.

3) The inner level stack must be unaligned to a dword boundary
(word boundary for a 16-bi t ' (I)RET).

When the firs t s i tua t ion occurs , a page fau l t (except ion 14) occurs
spu r i ous l y, i nd i ca t i ng a page l eve l p ro tec t i on v i o l a t i on du r i ng a "use r "
leve l read o f the inner leve l s tack .

The second si tuat ion, whether or not the inner level stack is dword
al igned (or word a l igned in the case of a 16-b i t (I)RET), a lso requi res
tha t severa l cond i t ions occur s imu l taneous ly :

1) Paging must be enabled, and the page table and directory entr ies
for the inner level stacks must be marked as supervisor access only.

2) The software must execute an inter-level RET or IRET to a
Pro tec ted Mode program a t p r iv i lege leve l 3 . An in te r - leve l IRET to
Vi r tua l 8086 Mode does not exh ib i t th is prob lem. An in ter - leve l RET
or IRET to level 1 or 2 does not exhibit this problem.

3) The bus HOLD input must be asserted during the read, cycle which
pops ESP (or SP) off the inner stack as a result of a RET or IRET
i n s t r u c t i o n .

When the second situat ion occurs, no exception is generated, but the
processor w i l l d r ive an incor rec t phys ica l address dur ing the read cyc le
in which SS is popped from the inner level stack.

Workarounds: A software workaround to both si tuat ions is to mark al l
pages which conta in the inner leve l s tacks as user readable. This
p r e v e n t s e i t h e r t h e fi r s t o r s e c o n d s i t u a t i o n f r o m o c c u r r i n g . T h e
segmentation system can be used to prevent user access to the linear
addresses con ta in ing the inner - leve l s tacks .

A workaround if not using the HOLD input is merely to keep the inner-
l eve l s t acks a l i gned .

A Hardware workaround if using the HOLD input but not using the
so f tware workaround above i s the fo l low ing : S ince the p rob lem occurs
dur ing the fi rs t cyc le a f te r a locked cyc le to read the CS descr ip to r, a
hardware workaround is to prevent a HOLD request from hitting the

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y 9

pcjs.org

processor during bus cycle fol lowing a LOCKed cycle. This can be
accomplished with a latch that delays the LQCK* signal through a
flip-flop clocked by READY* to gate a HOLD request going into the chip.
Th is w i l l p revent a ho ld request f rom get t ing to the 80386 unt i l a f te r
the complet ion of the first cyc le af ter a LOCKed cyc le. For the hardware
workaround to be suffic ient , a l l s tacks must be proper ly a l igned, and
BS16* must be t ied inactive.

14. Protected Mode LSL Instruction Should not be Followed by PUSH/POP

Prob lem: Th is i t em per ta ins on ly to Pro tec ted Mode. I f t he Pro tec ted
Mode LSL instruct ion (Load Segment L imi t inst ruct ion, executable only in

•Pro tec ted Mode) is immedia te ly fo l lowed by cer ta in ins t ruc t ions tha t
perform a stack operation, such as PUSH or POP (see exact list below),
the value of the (E)SP register may be incorrect af ter the stack
o p e r a t i o n . N o t e t h a t s t a c k o p e r a t i o n s r e s u l t i n g f r o m i n t e r r u p t s o r
except ions fo l lowing LSL do update (E)SP correct ly.
Workaround: Do not immediately fo l low the Protected Mode LSL instruct ion
w i th any o f t he f o l l ow ing s tack ope ra t i on i ns t ruc t i ons : IRET (i n t ra -
task), POPA, POPF, POP (mem, reg, seg-reg), RET (intrasegment or
i n te rsegmen t) , CALL (d i rec t i n t rasegmen t , d i rec t i n te rsegmen t , i nd i rec t
intrasegment via reg), ENTER, PUSHA, PUSHF, PUSH (mem, reg, seg-reg,
immed) . Other ins t ruc t ions tha t opera te on the s tack (e .g . CALL ind i rec t
via memory, and LEAVE) can be used safely after the Protected Mode LSL.
Note that even i f a forb idden inst ruct ion immediate ly fo l lows LSL, (E)SP
may st i l l be updated correct ly, s ince th is problem is data-dependent and
only occurs i f the LSL operat ion succeeded (i .e . i f LSL set the ZF flag) .

15. LSL/LAR/VERR/VERW. Instruct ions Malfunction with Null Selector

Problem: The Protected Mode instructions LSL, LAR, VERR or VERW executed
wi th a nu l l se lec to r (i .e . b i t s 15 th rough 2 o f the se lec to r se t to ze ro)
as the operand wil l operate on the descriptor at entry 0 of the GDT
ins tead o f uncond i t i ona l l y c lea r ing the ZF flag .

Worka round : The "nu l l desc r i p to r " (i . e . t he desc r i p to r a t en t r y 0 o f t he
G D T) s h o u l d b e i n i t i a l i z e d t o a l l z e r o e s . I f t h e " n u l l d e s c r i p t o r " i s
i n i t i a l i zed to a l l ze roes (i . e . an i nva l i d va lue) , t he access made by
t h e s e i n s t r u c t i o n s t o t h e " n u l l d e s c r i p t o r " w i l l f a i l (s i n c e t h e s e
i n s t r u c t i o n s o n l y o p e r a t e o n v a l i d d e s c r i p t o r s) . T h e f a i l u r e w i l l b e
reported with ZF cleared, which is the desired behavior when the operand
is a nu l l se lector. Note that many systems a l ready have the "nu l l
desc r i p to r " i n t he GDT in i t i a l i zed to ze roes , as i s des i red fo r t h i s
workaround.

16. "Not Present" LDT in VM86 Task Raises Wrong Exception

Problem: A task switch to a VM86 task that has a "not present" LDT
descr ip tor wi l l cause a Segment Not Present fau l t (except ion 11) rather
than an Inval id TSS faul t (except ion 10).

Workaround: The simplest workaround is to use a NULL selector for
the LDT in a VM86 task, since the LDT is not used when executing in
Vi r tua l 86 mode. However, i f an in te r rup t o r except ion occurs , the
processor wi l l swi tch out of Vi r tual 86 mode, into protected mode to
h a n d l e t h e i n t e r r u p t , w i t h o u t s w i t c h i n g t a s k s . T h u s , ' t h e o p e r a t i n g
system should be structured so that a l l Interrupt and Trap gates
active when executing a VM86 task reference segments in the GDT.

If an LDT must be supplied for a task that executes in Virtual 86 mode,
there are several easy workarounds. One is to ensure that LDT segments
are never marked "not present" in the i r segment descr ip tors . Paging is
not affected by this errata. LDT segments can be paged out and marked
"not present" in their page descr iptors in systems which use paging.

If the operating system must mark the LDT segment descriptor "not

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y 1 0

pcjs.org

present" , the "not present" (except ion 11) handler must be able to
handle the case of a "not present" LDT during a task switch. The "not
present" except ion is reported with the LDT selector as the error code
and with the VM bit set to 1 in the EFLAGS image of the caller. Since
a VM86 task cannot normally raise .a "not present" fault , the "not
present" except ion handler can detect th is case by checking i f the stored
VM b i t i s se t . I f so , the fau l t can be red i rec ted to the TSS Fau l t
hand le r.

17. Coprocessor Instruct ions Crossing Page/Segment Boundaries

P rob lem: I f t he fi r s t by te o f a cop rocesso r (ESC) i ns t r uc t i on i s
located on the last byte of a page or segment, and the second byte is
located on a page or segment which would create a fault, then the
p rocesso r w i l l hang when i t t r i es to s igna l t he fau l t . The p rocesso r
remains stopped unt i l an in terrupt , NMI, or RESET occurs. This errata
app l ies on ly to coprocessor ins t ruc t ions in sys tems which use v i r tua l
memory.
Workaround: In v i r tual memory systems, the t ime-s l ice or watchdog t imer
provides an easy workaround, s ince a t imer interrupt wi l l a lways cause
the p rocessor to beg in in te r rup t p rocess ing . The t imer rou t ine shou ld
tes t the fo l l ow ing cond i t i ons to de te rm ine i f t h i s e r ra ta was
encountered.

1) The saved CS:EIP must point within 8 bytes of the end of a page.
2) The last byte within the page must contain an ESC opcode.
3) All bytes between the saved CS:EIP and the ESC opcode must contain

valid prefix opcodes (segment override 26h, 2Eh, 36h, 3Eh, 64h, 65h,
address size override 67h, operand size override 66h) .

4) The next page is not present, or not accessable.
I f a l l four cond i t ions are t rue , then the t imer rou t ine can assume th is
errata was encountered, and s ignal a page faul t , which wi l l c lear
the condit ion. This workaround should be placed in the Operat ing System,
so that appl icat ions programs are unaffected.

18. Double Page Faults Do Not Raise Double Fault Exception

Problem: I f a second page fau l t occurs, whi le the processor is *
a t temp t ing to en te r t he se rv i ce rou t i ne fo r t he fi rs t , t hen the p rocesso r
wi l l invoke the page fau l t (except ion 14) handler a second t ime, ra ther
than the doub le fau l t (except ion 8) hand le r. A subsequent fau l t , though,
wi l l lead to shutdown.

Workaround: No workaround is necessary in a working system.

8 0 3 8 6 I n t e l C o r p o r a t i o n P r o p r i e t a r y 1 1

pcjs.org

Design Notes

1. Read Cycles Require Val id Data Bus Levels

Please refer to Specificat ion Change 5 for important news on proper
system design for 386 read cycles.

2. Use of ESP as a Base Register With CALL, PUSH, and POP Instructions

Th i s c l a r i fies how ESP behaves w i t h i ns t ruc t i ons t ha t imp l i c i t l y
re ference the s tack and exp l ic i t ly re ference another locat ion in memory
using ESP as a base register.

I n s t r u c t i o n
Expl ic i t Memory

Reference uses
the ESP value...

ESP value
used as base

CALL- ind i rec t - thru-memory be fo re
decrementing

old ESP

PUSH-from-memory be fo re
decrementing

POP-to-memory a f t e r
increment ing

old ESP

new ESP

This is consistent in that the CALL-indirect- thru-memory and the PUSH-
from-memory both use the same ESP value.

Furthermore, the relation between PUSH-from-memory and POP-to-memory is
such tha t i t a l lows the ins t ruc t ion sequence:

PUSH [ESP+n]
POP [ESP+n]

to have the des i rab le proper ty o f both inst ruct ions re ferenc ing the same
memory location.

3. Use of Code Breaks to Debug 86/286 Operating Systems

The RF bit in the EFLAGS register is cleared by a 16-bit IRET, making
i t d i f ficu l t t o use the on -ch ip debug reg is te rs to se t code b reakpo in ts
to debug 16-b i t opera t ing sys tems. Data b reakpo in ts work fine in a l l
cases, and code breakpoints work fine as long as al l in terrupt handlers
a r e 3 2 - b i t s a n d r e t u r n w i t h 3 2 - b i t I R E Ts o r t a s k s w i t c h e s . I n 1 6 - b i t
environments, software debuggers should use the CC (single byte INT 3
ins t ruc t ion) to p lace so f tware b reakpo in ts in code.

4 . Use o f ESP in 16-b i t Code w i th 32-b i t In te r rup t Hand lers

When a 32-bi t IRET is used to return to another pr iv i lege level , and
the old level uses a 4G stack (B=l), while the new level uses a 64k
stack (B=0), then only the lower word of ESP is updated. The upper word
remains unchanged. This is fine for pure 16-b i t code, as wel l as pure
32-b i t code . However, when 32-b i t i n te r rup t hand le rs a re p resen t , 16 -b i t
code should avoid any dependence on the upper word of ESP. No changes
are necessary in existing 16-bit code, since the only way to access ESP
in USE16 segments is through the 32-bit address size prefix.

80386 In te l Co rpo ra t i on P rop r i e t a r y 12

pcjs.org

