Undocumented iAPX 286;Test Instruction
“Test Instruction Purpose

The iAPX 286 microprocessor (part number 80286) has an undocumented
instruction used by Intel test programs to allow direct access to internal
registers for fast initialization. The instruction is called LOADALL. Eacn
80286 s iasted with the LOADALL instruction. LOADALL is guarinteed to work
on ear: 80285. :

LOADALL allows explicit control 'of the descriptor cache register associated
with each segment register independent of the segment register value and
descriptor tables. LOADALL can be used to extend either real mode or
protected mode. The protected mode 80286 can be extended to emulate iAPX 86
real mode programs with LOADALL. In real mode, LOADALL can provide
addressability to the other 15 Mbytes of the 286 physical address space.

The operation of LOADALL is closely tied to the internal hardware of the
80286. The iAPX 386 will not have the same internal hardware. LOADALL will
not work on an iAPX 386. The iAPX 386 has an alternative means of emulating
iAPX 86 real mode programs.

LOADALL Description

A1l CPU registers (including LDTR, TR, GDTR, IDTR, and MSW) are loaded from
memory by this instruction. The normally hidden descriptor cache registers
for the ES, DS, SS, CS, TR, and LDT registers are also loaded. LOADALL may be
executed in either real address mode or protected mode (CPL must be 0). Any
attempt to execute LOADALL at any privilege level other than 0 in protected
inode causes exception 13 with an error code of 0. .

LOADALL allows direct control over the base, limit, and access rights
associated with each segment register. These values are kept in the
descriptor cache registers which are normally hidden from programs. In
protected mode, LOADALL can set the selector, base address, limit, and access
rights for a segment register without a descriptor table entry corresponding
to the program visible selector value. The normal protected mode protection
rules can also be changed. In real address mode, the physical address, limit,
and access rights for a paragraph id can also be changed from the normal real
mode definition.

The standard protected mode segment register loading checks (for privilege and
access rights) are not performed by LOADALL on the values loaded into the
descriptor caches. Using LOADALL in iAPX 86 real mode also does not involve
any checks. Once loaded, the 80286 hardware will perform physical address
calculation within the segment, offset checks against the limit, and access
rights checks for all memory accesses using that segment register in either
operating mode.

To retain protected mode system integrity, the policies used to define
descriptor table contents must also be applied to the dynamicly created
descrintors loaded into the descriptor cache registers with LOADALL. Once
defined, the 80286 segment access hardware will limit segment usage to the
physical memory region defined.

o

The LOADALL instruction is encoded in two consecutive bytes as 00001117 *
00000101, with 00001111 at the lowest memory address. LOADALL executes in 195
clocks and performs 51 bus cycles.

LOADALL cannot switch the 80285 from protectea mode to real mode. Once in
proiected mode, the MS4 value loaded by LOADALL must have a one in bit
The RESET input is the only way to reenter real mode.

position 0.

LOADALL reads a 102 b

[S
yte area of physical memory starting at physical memory

location 000800H (2048). The entire execution state of the 80286 (consisting
of 24 registers) is dzfined upon completion of this instruction. The

descriptor cache registe
loaded from this area.
states.

rs for the ES, DS, SS, CS, TR, and LDT are directly
The instruction requires 190 clocks with no wait

LOADALL Memory Area Format

Physica] Memory Address
in Hexadecimal

800-805
806-807
808-815
816-817
818-819
81A-818
81C-81D
81E-81F
820-821
822-823
824-825
826-827
828-829
82A-828
82C-82D
82E-82F
830-831
832-833
834-835
836-838
83C-841
842-847
848-84D
84E-853
854-859
85A-85F
860-865

Associated CPU Register

Page 2

None

MSW

None

TR

Flag word
1P

LoT

DS

SS

CS

ES

DI

SI

8P

SP

BX

0X

CX

AX

ES descriptor cache
CS descriptor cache
SS descriptor cache
DS descriptor cache
GDTR

LOT descriptor cache
IDTR

TSS descriptor cache

R IR T Somia

No checks are made between the program visible selector values and the
associated descriptor table entry. LOADALL does not perform any descriptor
table accesses. No checks are made regarding the type or access rights

defined by the descriptor. Any new descriptors defined by this instruction
will be automatically used by subsequent processor extension memory references.

Any subsequent segment register load instruction will reload the associated
descriptor cache register in the normal manner according to the operating mode
of the CPU. In real mode, the low 4 bits and nigh 4 bits of the base address
are set to zero. The paragraph id is inserted into bits 19-4 of the base
address. The segment limit is reset to FFFFH and access rights is changed to
a writable segment. In protected mode, the base address, limit, and access
rights are loaded from the descriptor.

The descriptor cache entries are in the following format:

bytes 0-2 24-bit physical base address of the segment. The bytes are
stored in ascending order with the least significant byte at
lowest memory address.

byte 3 Access rights byte is in the format of the access byte in a
descriptor. The only difference is that the present bit
becomes a valid bit. If zero, the descriptor is considered
invalid and any memory reference using the descriptor will
Cause exception 13 with an error code of zero. Loading a
descriptor cache register with an invalid descriptor does not

- Cause an immediate exception. Any attempted use of the
descriptor to reference memory causes the exception. Such an
exception is restartable and the saved machine state appears
as if the instruction had not been attempted. The value
loaded by LOADALL can be read without any exceptions. The DPL
fields of the SS and CS descriptor caches determine the CPL.
The DPL fields of the DS and ES descriptor caches should be
3. The CS descriptor may be loaded with a writable data
segment descriptor.

bytes 4-5 16-bit limit of the segment. ' The word is stored in two bytes
in normal word format. The interpretation of this field is
determined by the type of segment identified by byte 3.
Grow-down data segments are a special case of how to
interprete the limit field. The data sheet describes how this
field works.

The GDTR and IDTR are in the following format:
bytes 0-2 24-bit physical base address of segment. The bytes are stored
in ascending order with the least significant byte at the
lowest memory address.
byte 3 Should be zeroes

bytes 4-5 16-bit limit of the segment. The word is stored as two bytes
in normal word format.

Page 3

- L) R LT TTEES prVYWel 1 Wl bW \-l\\.\-ublllg LUHU"“-L, Lie 101 IOW'Ing
is required of the descriptor cache register contents: .

1. The stack segment is a writeable, valid data segment .

2. The code segment can be of three types: execute only, read/exascute
only, or read/write/execute. To be execute only, use an execute only
code segment access rights byte value. To be execute/read only use a
execute/read code segment access rights byte value. »lo be
read/write/execute use a writable, expand-up data segment access
" rights byte value. .

For proper protected mode operation, the following is required:
3. The DPL field of the CS descriptor cache access-rights byte must
equal the DPL field of the SS descriptor cache access rights byte.
These DPL fields are-the CPL of the processor.

4. The DPL fields of the ES and DS descriptors should be 3 to prevent
their being zeroed by RET or IRET instructions.

Executing Real Mode ?rograms in Protected Mode

An iAPX 86/88 program using real mode addressing can be executed in protected
mode with full protection between it and other programs. All segment register .
semantics of iAPX 86 real mode can be emulated. The address space of the real
mode program can also be limited to less than 1 megabyte and be relocated

-anywhere in the 16 Megabyte physical address space. The following sections
describe several aspects of this emulation. ’

Address space relocation and control

"i1APX 86 real mode emulation requires any segment register load instruction
Cause a protection exception. An error code with bits 1-0 being zero and bits
15-2 being non-zero identify a segment register load exception. Such
exceptions are restartable. All instructions that do not load a segment
register run at full iAPX 286 speed and with full access checks.

The exception handler must interprete the segment register load instruction to
place the iAPX 86 paragraph id and the associated protected descriptor into
the LOADALL memory area. LOADALL then loads the segment register with the
value used by the interrupted instruction, points the descriptor cache entry

at the protected physical memory region, and restores the other segment
registers.

Most segment load instructions will cause exception 13 if all LDT and GOT
entries are marked with a privilege level less than the CPL of the emulated
program. The CPL of the emulated program is defined by the DPL fields of the
CS and SS descriptor caches.

Page 4

s o " [: :
Segment register loads using a selector value of 0000H to 0003H do not cause
an exception on loading the segment register. Instead, any memory reference
using the segment register will cause exception 13 with an error code of 0.
No memory reference will occur. This case can be identified by checking
whether DS or ES contain a value of 0-3. These exceptions are also
restartable.

Limits can be enforced on the size of the emulated iAPX 86 adéress space. An
iAPX 86 paragrapn id that is outside the defined memory area can be loaded,
but the segment register can be marked invalid for memory addressing. LOADALL
can be used to load the iAPX 86 paragraph id into the segment register, but
the descriptor cache entry is marked invalid. The paragraph id can still be
read without causing a protection exception.

If a selector value is loaded whose segment overruns the end of the defined
physical memory area, the limit field can be set less then 65535 to prevent
accesses outside the defined memory area with that segment regdister.

The emulated iAPX 86/88 address space can be relocated anywhere in the 16
Mbyte iAPX 286 physical address space by adding a 24-bit relocation factor to
the 20-bit iAPX 86/88 physical address value associated with the iAPX 86
paragraph id.

1APX 86/88 Interrupt Table Simulation

The LOADALL instruction allows a protected mode 80286 to provide a simulated
iAPX 86/88 interrupt table to iAPX 86/88 programs. The protected mode iAPX
286 interrupt table is different from iAPX 86/88 since it must contain more
information and be protected from improper use. The protected mode interrupt
table can not be addressed by the same selector-offset pairs used in iAPX 86
real address mode.

The iAPX 86/88 interrupt table is simulated by having all INT instructions
cause a protection exception. Setting the DPL of all IDT gate entries to less
than the CPL of the emulated program will cause exception 13 for all INT
instructions. The error code will indicate an IDT vector with the EXT bit
cleared. External interrupts and program exceptions will continue to use the
protected IDT.

The i1APX 86/88 INT instruction can be simulated by the exception 13 handler.
For INT instructions, it looks into the iAPYX 86 interrupt vector table for the
vector associated with the interrupt vector in the error code. After
simulating the machine state save, the iAPX 86/88 program is restarted at the
interrupt vector address.

Interrupt handlers for external interrupts can pass control to an jAPX 86 real
mode program. Each external interrupt handler for an iAPX 86 interrupt must
determine if the interrupt is for a real mode program, if so then it emulates
a real mode interrupt the same way as for the INT instruction.

Page 5

Allowing writes into a code segment

Code segment writes are possible by using writeable data segment descriptors
for the CS cache entry. Normally the code segment is write protected. If the
code segment descriptor is always marked writable, then writes using the CS
prefix will work correctly.

Allowing temporaries to be placed into segment registers >

A temporary value which does not correspond to a valid segment causes
exception 13. It is possible to place that value into the program visible
segment register, but mark the descriptor cache entry invalid. The invalid
descriptor lets the program reference the numeric value stored in the segment
register value, (i.e. MOV AX,ES) but prevents any memory reference instruction
from using the segment register to address memory (i.e. MOV AX,ES:[BX]).

This feature requires an error handler to know that exception 13 with an error
code which is an invalid segment selector value indicates a potential’
temporary value problem. The exception handler must simulate the segment load
instruction to place the error code into the appropriate segment register and
use LOADALL to mark the descriptor cache entry invalid. The program may then
be resumed after the segment load instruction.

Simulating I/0

A1l 1/0 instructions of the iAPX 86 program can be simulated. When the I0QPL
(I1/0 privilege level) is less than the CPL of the simulated iAPX 86 program,
exception 13 will occur, with an error code of 0, on IN, OUT, STI, CLI, and
LOCK instructions. The exception handler can identify these instructions and
emulate their actions. The iAPX 86 program can then be restarted.

The LOCK instruction prefix causes exception 13 when CPL is greater than
IOPL. For most systems, the LOCK prefix could be ignored. Restarting the
program after the LOCK prefix would be acceptable. In special cases, the
LOCKED instruction may need to be run with a lower CPL.

Mixing emulated real mode software with native protected mode software

A system which emulates a real mode program may also run protected mode
software. If the GDT and IDT has ali entries marked level 2 or less, the
emulated program cannot use them if it runs at level 3. The emulated program
can have a task state segment associated with it. An LDT may be present if

all entries are marked level 2 or less. Normal protected mode tasks may use
an LDT with entries at privilege level 3.

Interrupt handlers may use either task or interrupt/trap ?ates. A1l interrupt

handlers using trap/interrupt gates must execute at privilege level 2 or
less. Interrupts that use task gates may run at any privilege level,.

Page 6

IN€ register save operation of the task switch or interrupt handler will work
without exceptions. The iAPX 86 paragraph ids in the segment registers can be
read without a protection exception. The segment registers can be reloaded
with protected selectors without a protection exception. Interrupting from a
emulated iAPX 86 program does not affect interrupt latency.

Returning from an interrupt requires some checks. The return from the
interrupt handler must check whether an iAPX 86 real mode prqgram had been
executing. If so, the return sequence must use the LOADALL ifistruction to
reload all the registers rather than the normal IRET instruction.

Depending on the iAPX 86 paragraph ids used, the IRET instruction might not
Cause a protection exception on returning to an emulated iAPX 86 program. The
CS value of an interruptted iAPX 86 program saved on the stack or in the TSS
does not correctly identify the privilege level, normally 3, of the emulated
iAPX 86 real mode program. The privilege level of the interrupted program is
determined by the RPL fields of the saved CS and SS selectors. If these
values are the same and refer to a visible code segment, the CPU could attempt
to execute the protected code segment at an incorrect address.

The interrupt handler should test whether an emulated iAPX 86 program was
executing. An interrupted protected mode program can be restarted in the
normal manner while an emulated program requires LOADALL.

Emulating an 8087 with the 80287

The instruction and data addresses saved in the protected mode 80287
-environment area are in a different format than from the 8087. In real mode
the 80287 environment is in the same format as the 8087. 1In protected mode
the 80287 environment is changed to store 32-bit virtual pointers rather than
20-bit iAPX 86/88 physical addresses.

The 80287 can be used by both normal protected mode programs and emulated iAPX
86/88 real mode programs. The 80287 operates in either real mode or protected
mode. The FSETPM instruction must be executed before starting a normal
protected mode program if the 80287 was in real mode. The 80287 must be
reset, via the RESET pin, to reenter real mode for an emulated jAPX 86/88
program after being used by a normal protected mode program. External
hardware could reset the part to reenter real-mode. The TS bit of the MSW can
be used to monitor for the first ESCAPE instruction executed in a program.

The ﬁxcgpgi;n 7 handler can then determine what mode of operation is required
in the 80287.

The 20-bit physical addresses kept by the 80287 for the instruction and data
pointers will reflect the paragraph id in the program visible segment register
and offset used by the ESC instruction to address memory. The descriptor
cache base and limit loaded by LOADALL is used to generate physical memory
addresses for data transfers.

The WAIT instructions required by the 8087 before ESC instructions can be
safely executed by the 80287. _

Page 7

Discrepancieé‘ffom an iAPX 86/88 b§ing Emulation

An 80286 can nct exactly emulate an 8086/88 in all possible cases. Most
differences are due to the extra protection checks made in the 80286 which are
not made in the 8086/88. The discrepencies listed here are minor enough that
very few programs will be affected.

1.

The PUSH SP instruction pushes a different value on the iAPX 286 than
on the iAPX 86,88,186. The value pushed onto the stack by tne 80286
is the value of SP before the push instruction executes. The value
pushed onto the stack by the 80856/88/1856 is the SP value after the
push instruction executes.

Shifts and rotates on the iAPX 286 mask the count to 5 bits. The
iAPX 86/88 allows all 8 bits to be used. The iAPX 186/188 also masks

‘the shift count to 5 bits.

Segment wrap-around is not allowed on the 80285. Segment limit
violations are not restartable in general on the 80286. . Programs
that rely on reading some special value when referencing non-existent
memory may not be correctly run.

Exceptions 9, 12, or 13 occur during attempts to wrap-around a
segment depending on the location and type of operand involved. All
exception 12 cases can be emulated and the program restarted.
Exception 13 or 12 that occurs for an ESC instruction occurs before
the 80286 or 80287 execute the instruction, and are therefore
restartable. Exception 9 can not be restarted.

Most simple load and store instructions that violate a segment limit

are restartable. The current case that can not be restarted in
general is:

Any floating point operand reference where the second or
subsequent word exceeded a segment limit. The exception 9
handler must execute FNINIT before any other wait or ESC
instruction. The internal status of the 80287 cannot be read
until it is forced idle by FNINIT. The FNINIT instruction
will mark all floating point data registers as empty, set top
of stack to 0, and mask all errors. The numeric instruction
and data addresses stored in the 80287 will correctly point at
the failing instruction. If the 80286 program interrupted by
the math address error is not the program that executed the
failed ESC instruction, then that program can be restarted.

Page 8

ST TR S T

Memory address space wrap-around is not directly supported. The jAPX
86/88 allow wrap around from the top of the 1 megabyte address space
into the bottom of the 1 megabyte address space (i.e. address
FC00:4000 is same as 0000:0000). To emulate instructions that
address memory with such wrap-around, requires the segment register
limit be set to cause a protecticn exception for addresses bsyond
vsimulated physical address OFFFFFH, or adaresses below 000Q0H using
an expand down segment, and software emulation of the instruction to
address memory at the bottom of the address space.

An 8086/88/186 program will require different amounts of time to
execute instructions on the 80286. Most instructions will run faster
on the 80286. Instructions which do not modify a segment register,
and do not use a segment register with a zero in it will run faster
on the 80286. Instruction that first access memory with a segment
register containing a zero will run slower on the 80285.

Instructions that load a segment register with a non-zero selector
value will run slower on the 80286,

The iAPX 286 and iAPX 186 can generate the most negative number as a
quotient for the IDIV instruction. The jAPX 86/88 will generate the
divide error exception instead.

The iAPX 286 divide error return address will point at the divide
instruction including prefixes. The registers will appear as if the
instruction had not executed. The 1APX 86/88/186/188 return address
will point after the divide instruction and the DX:AX or AH:AL
registers may have been changed.

The numeric instruction address stored in the 80287 includes all

leading prefixes before the ESC opcode. The 8087 numeric instruction
address always points at the ESC opcode.

An iAPX 286/20 system does not require an interrupt controller for
the ERROR signal. iAPX 86/20 systems use an interrupt controller to
prioritize simultaneous interrupts and mask errors from the 8087 if
servicing them must be delayed.)

If the same interrupt controller is provided as in the iAPX 86
system, the input used for the 8087 ERROR signal can be grounded.
Instructions that control that input of the interrupt controller
become NOPs. Watch out for non-specific EOI instructions inside an
8087 error handler which may affect other interrupt inputs.

80287 errors do not normally affect an interrupt handler. As long as
any program does not execute WAIT or ESC instructions, it can not be
interrupted by the 80287.

If a different interrupt system is used in the 1APX 286 system than
in the iAPX 86 system, any I/0 instructions to the interrupt
controller may have to be emulated.

Page 9

10.

11.

12,

13,

14.

15.

16.

17

18.

Numeric error interrupts use interrupt vector 16. Since an extarnal
interrupt controller may be used in iAPX 86,88,186 systems, another
interrupt vector may have been used for numeric interrupts.

0o not perform port 1/0 to ports 00F8H to OOFFH. The 80287 may not
operate properly if this is allowed. These I/0 locations are
reserved by Intel. ' N

The interrupt enable bit of the flag word may not change when a POPF
or IRET instruction attempts to change it. The IOPL field of the
flag word controls whether IF can be changed. Subsequent PUSHF and
INT instructions will save a value of IF which differs from the value
in an 8086/8088 program.

If STI and CLI are emulated as NOPs then they will fail to change
IF. Subsequent PUSHF and INT instructions will save a value of IF
which differs from the value in an 8086/3088 program.

The flag word has two new fields: IOPL and NT. IOPL can not change
except at level 0, but NT can be changed by IRET and POPF
instructions. The IRET instruction attempts a task switch when NT is
set. The back link field of the current TSS should have a 0 in it to
cause exception 13, with an error code of 0, if the iAPX 85 program
attempts an IRET after setting NT. The exception 13 handler may then
simulate an iAPX 86 IRET operation.

The iAPX 86 address space may be Timited. Programs may use some form
of memory space scanner to see how much memory is available.

Accesses to illegal locations are expected. The program emulator
must decide what to do about illegal accesses.

The 80286 defines new instructions for undefined opcodes in the
8086/88. An 8086/88 program with an unknown bug in it that executes
these undefined opcodes will work differently on an 80286.

Programs with self-modifying code may work differently on an 80286.
The 80286 prefetcher can fetch more bytes ahead of the current
instruction than the 8086 or 8088. A program that modifies an
instruction that has already been prefetched will not see the changed
instruction. Any program which jumps after modifing an instruction
before executing it will correctly execute the modified instruction.

Regions of the emulated jAPX 86,838,186 address space can not be write
protected. The XCHG, ADC, SBB, RCL, and RCR instructions are not
restartable if their memory-based operand is in a write protected

segment.

Page 10

Extending the Address Space of Current iAPX 856 Software
|
Current iAPX 86 real mode programs can use the extended address space of the
iAPX 286 in a limited manner. To address the extended memory, LOADALL must be
usea to load the descriptor cache with an base address beyond the normal 1
Mbyte address range. That segment ragister must not be changed by software,
else the segment register will point back into the 1 Mbyte address space.

Two _types of systems are examined: accessing a single large da¥a base in a
limited manner, or splitting software into normal and extended areas. The
first is the easiest to implement, while the second is more general.

Access to a large data area outside the 1 Mbyte address space could be
provided by a subroutine. The subroutine scans the large data structure to
locate the necessary item, then copy all data between the normal address space
and the extended address space.

Interrupts must be disabled whilz the subroutine uses segment registers that
have been set by LOADALL. The reload of segment registers inside an interrupt
routine would change the actual physical address from that loaded by LOADALL
before the interrupt. After all accesses in the extended area are done,
interrupts may be enabled.

Returning the address of an extended data structure requires passing data
through a segment register. For example, the ES register could have been
changed by LOADALL to point at a data area outside the bottom megabyte of
Rhysical memory. The subroutine must not reload ES while it runs. The value
stored in ES is not important since it is not related to the physical
ad?rezsés Interrupts must not be allowed since the interrupt routine may
reloa .

A second technique uses special paragraph ids (i.e. FFFFH) to signal that a
peice of software is running in extended mode. All interrupt handlers in the
system must look when they return to the interrupted program to see if any of
the segment registers contain FFFFH. If so then that segment register points
at extended memory. LOADALL must be used to load all the registers and the
segment base address used last. The LOADALL memory area should contain that
value left there from the previous usage. Descriptors for the other segment
{SESZEErS with normal paragraph ids must be constructed before executing

A semaphore must be placed around software that writes into the LOADALL area
such that once written into, the software can execute LOADALL without
interruption. '

Page 11

" Mixing Real Mode and Protected Mode

The 80286 can alternate between real mode and protected mode. Some programs
could be executed in real mode in the bottom megabyte of memory, while others
execute in protacted mode in the upper 15 Mbytes of memory. An external OR
gate could RESET the 80285, independent of the rest of the system, to force it
to enter real mode. A short routine at the powar up address could redirect
the software to the correct real mode program. kl :

After executing the real mode program, LOADALL could then quick]y restart tie
protected mode software. LOADALL can be used as a form of task switch from
real mde to a protected mode task.

One operating system could service both the real and protectad mode software.
Any operating system call from the real mode program would cause a switch to
protected mode. The protected mode software could then construct descriptors
that refer to the same physical memory addresses used by the real mode
paragraph ids. After conversion, the operating system could then perform all
work in protected mode.

Interrupts must be handled specially. Interrupt handlers for both real mode
and protected mode must be present at all times. If an interrupt handler
needs to access a data area, that data area must be addressable from both real
and protected mode. The real mode interrupt table would be kept at location
000000H. The protected mode IDT could be anywhere. LOADALL will switch to
the protected interrupt table.

-

Page 12

Implementation Notes

The exception 13 handler will probably use a lookup table for the opcode byte
of the instruction causing exception 13 to determine the correct action for
this instruction. In general, any undefined opcode causes exception 6 and
would therefore not invoke exception 13. Hcwever, some implementations may
emulate some instructions. The following explains the empty entries in the
opcode map to aid in determining an emulation strategy. N

The following is a list of exclusions from the general rule of ‘undefined 30236
opcodes causing exception 6. :

The LOADALL instruction (opcode OF04H) will cause exception 13 in
protected mode if executed when CPL is not 0. LOADALL may be executed at
any time in real address mode.

The OFOSH opcode will cause exception 13 in protected mode if executed
when CPL is not 0. If OFO5H is executed in real address mode, or in
protected mode when CPL=0, the 80286 stops normal execution. RESET must
be used to restart the CPU in this case. The OF05H opcode may be executed
at any time in real address mode.

The opcode 82H is an alias for opcode 80OH. i
VAN
The ODOH/0D1H opcode with a REG field = 6 is an alias ‘for the SRE
instruction (REG = 7). '

The opcode OD6H is a proprietary single byte instruction. \ No restrictions
apply to its execution. It can be emulated as a NOP. N

- %, .
e T

S—
N ferey S
; LY

-
.

AR S AL ‘t‘; LAy
The OF1H opcode is a prefix which performs no function. It couéts lik%
any other prefix towards the maximum instruction length. No restrictions
apply to its execution.

The OF6H/OF7H opcode with a REG field = 1 is an alias for the TEST
instruction (REG=0). -

Page 13

Restarting string instructions which caused exception 12 (if SS override was

used) or exception 13 requires updating SI, DI, and CX (if repeat was used).
Which registers are updated depends on the instruction and when the exception
was detected. The following rules apply:

For STOS the DI register must always be updated by the exception handler
to restart tne instruction. The state of the DF bit in the flag word and
the operand size determines whether to use +2, +1, -1, or g2 to update

DI. If a repeated STOS was used, add 2 to CX to restart the instruction.

For INS the DI register must always be updated by the exception handler to
restart the instruction. The state of the DF bit in the flag word and the
operand size determines whether to use +2, +1, -1, or -2 to update DI. If
a repeated INS was used, increment CX to restart the instruction. If
exception 13 was not caused by an invalid IOPL during the first I/0 read,
then increment CX again if INS was repeated.

For SCAS the SI register must always be updated by the exception handler
to restart the instruction. The state of the DF bit in the flag word and
the operand size determines whether to use +2, +1, -1, or -2 to update
SI. If SCAS was repeated, add 2 to CX to restart it.

For OUTS the SI register must always be updated by the exception handler
to restart the instruction. The state of the DF bit in the flag word and
the operand size determines whether to use +2, +1, -1, or -2 to update

SI. If OUTS was repeated, add 2 to CX to restart it. Note that exception
13 may have been caused by an insufficient IOPL.

For MOVS the SI register must always be updated by the exception handler
to restart the instruction. The state of the DF bit in the flag word and
the operand size determines whether to use +2, +1, -1, or -2 to update
SI. The DI register must also be updated if the source operand (i.e.
DS:SI or seg:SI if a segment override prefix was used) did not cause the
exception. After updating SI, look at the source operand address to see
if exception 13 would occur. If not, then DI must also be updated the
same as SI. Always increment CX to restart MOVS if it was repeated. IF
DI was updated and a repeat prefix was used, then CX must be incremented
again for correct instruction restart.

For CMPS the DI register must always be updated by the exception handler
to restart the instruction. The state of the DF bit in the flag word and
the operand size determines whether to use +2, +1, -1, or -2 to update

DI. The SI register must also be updated if the ES:DI operand did not
Cause the exception. After updating DI, lTook at ES:DI to see if exception
13 would occur. If not then SI must also be updated the same as DI.
Increment CX if CMPS was repeated to restart it. IF SI was updated and a
repeat prefix was used, then CX must be incremented for correct
instruction restart.

Page 14

=!

 Early 80286 Errata of Interest

Early versions of the 80286 have several errata items which may effect the
implementation of software to emulate an 8086/8088 on a protected mode 80286
or expansion of the address space in real mode. These errata are in the Al
and B1 steppings of the 80285 and are fixed in later steppings of the 30285.

If the ES register has a null selector or ES:DI exceeds thg segment limit
when executing either the non-repeated MOVS or INS instructions, the saved
CS:IP value seen by the exception 13 handler will point after the MOVS or
INS instruction. The saved CS:IP value in later steppings will point at
the failed instruction (including prefixes).

If the segment register used for the destination operand in either the PQP
to memory, FSTSW/FNSTSW, or FSTCW/FNSTCW instructions has a null selector

in it or the segment limit is violated, the saved CS:IP value seen by the

exception 13 (or 12 if SS override was used) handler will point after the

POP/FSTSW/FNSTSW/FSTCW/FNSTCW instruction. The saved CS:IP value in later
steppings will point at the failed instruction (including prefixes).

If the stack limit is violated by a PUSH from memory instruction, the
saved CS:IP value seen by the exception 12 handler will point after the
PUSH instruction. The saved CS:IP value in later steppings will point at
the failed PUSH instruction (including prefixes).

If a segment 1imit violation or IOPL violation occurs in the repeated
MOVS, INS, OUTS, CMPS, SCAS, or STOS instructions, the value of CX seen by
the exception 12 or 13 handler will be the value used at the start of the
instruction. The SI and DI register values will reflect the iterations
used by the instruction. Later steppings of the 80286 will assure the
saved value of the CX.register reflects the number of iterations performed.

The LOADALL instruction may incorrectly enter protected mode. This only
affects systems that use LOADALL while in real mode and want to remain in
real mode. Jwo possible workarounds are possible: execute LOADALL using
O-wait memory for the data values or be sure bit 0 of memory location 804H
is zero. HOLD requests and processor extension data transfers should be
inhibited while LOADALL is running. Later steppings of the 80286 will
Eorregtly load the MSW during LOADALL with HOLD and processor extension
ransfers.

Page 15

