
DosGetNews()
February, 1989
Vol. 2, No. 2

Objects, Objects, Objects

by Dave Gilman

/ ! N' Message from the editor:

The articles in this issue of the DosGetNewsO
contain alot of information about various projects
happening in the OS/2IJDA Group. It is sug
gested that you sit down and enjoy it, as opposed
to trying to read it "on the run/' Thanks to this
month's contributors: Dave Gilman, Leif Peder-

. s o n a n d J a n i n e H a r r i s . >

As some or all of you have heard, Microsoft is
embarking on a new technology called object
oriented programming. The cynical amongst us
would claim that it is nothing more than the '90's
version of 'structured programming'. Those that
have been deeply involved over the last few weeks
believe that it is the only way to achieve Micro
soft's long term goals:

1. Better end-user support through an advanced
GUI (i.e. CUA 3).

2. True application interoperability.
3. Increased programmer productivity through

the use of object oriented techniques.

Concepts

Three of the main concepts behind object oriented
programming are encapsulation (datahiding), in
heritance (code reuse) and polymorphism (over
loading). The obvious question is, what do these
three buzz words actually mean?

Encapsulation is basically a way of viewing the
relationship between code and data. Today, code
is written to operate on a known data format (e.g.
an Excel spreadsheet); objects allow you to en
compass that knowledge. The capabilities of an
object are presented through an interface where
you ask the object to do something (e.g. print itself)
rather than operating on the data directly. For
example, including an Excel spreadsheet in a Word
document would involve asking the Excel spread
sheet object to include itself in the Word
documentThis is in contrast to today's process of
Word having to be familiar with the format of an
Excel spreadsheet file in order to read or display it.

Have you ever found yourself writing code only to
discover that you're rewriting something for the
nth time? Inheritance solves this problem! By
carefully partitioning a problem you could reuse
code by inheriting from another object. For ex
ample, consider the following objects (including
their characteristics) and the relationships between
them:

DosGetNews Page 1

pcjs.org



■ Microsoft Employee
o Well paid
o Nine to five work day
o Based in Redmond

• Developer
+ Inherits from MS Employee
o Able to code in C

Development Manager
+ Inherits from Developer
o Writes reviews

Sales Representative
+ Inherits from MSEmployee
* Overrides Based in Rdmd w/,
o Based in New York

Notice that in the case of the Sales Representative,
we inherited from Microsoft Employee but then
replaced (overrode) one of the characteristics (i.e.
'Based in Redmond' with 'Based in New York')
rather than adding a new one.

Last, but certainly not least, we have polymor
phism. This one is a bit trickier, but what it means
is that you can apply a single operation to different
objects and have them both react appropriately. If
you want to 'add' object 'a' with object 'b', the
method (procedure) that gets invoked to perform
an 'add' will be different depending on the object
type of 'a' and 'b' (e.g think about integers (addi
tion) and strings (concatenation)).

The Vision

So, what is Microsoft going to do with all of this
whizzy new technology? Simple: we are going to
achieve the three goals mentioned above. That is
what makes the objects project fascinating. It is a
long term, cooperative effort between all areas of
the company. The OS/2 group will implement the
first design of the architecture. System languages
will support it with C++ (and other) language
technologies. And applications will make use of it
in the next generation of Microsoft applications.

The Plan

Stay tuned to DosGetNews() for details as to how
Microsoft is going to pull this off (you know, same
BatTime, same BatChannel...).

DosGetNews Page 2

pcjs.org



PTNBALL-IN-C

by Leif Pederson

Pinball is the High Performance File System for our compiler is generating 286 code! Needless to
OS/2 1.2 and beyond. The chosen product name, say, PIC came out much faster than FAT.
High Performance File System (or HPFS), is in
dicative of Pinball's primary goal: to be fast! Performance
Performance together with long name and ex
tended attribute support are probably Pinball's The fly-off tests mentioned above were pulled
most important features. This article will briefly together quickly in order to get some feeling on
cover some history and some interesting features, how Pinball would do under some real-life scenar-
look at performance, and describe Pinball inter- ios. Measurements of PIC vs. FAT have been done
nals. Lastly, it will cover differences in our build periodically and the most recent available are
environment and give some project status. shown below, courtesy of Russ Blake's group. The

tests are listed with an indication of what the test
H i s t o r y d o e s a l o n g w i t h t h e e l a p s e d t i m e r e l a t i v e t o F A T .

Numbers were taken on build 12.71 except for
The Pinball-In-C (PIC) product is based on Gor- MakeC which was on 12.60 using a PS/2 model
don Letwin's work. Gordon architected and de- 80-071, with a 400 KByte cache,
signed Pinball and is currently working with a
team of developers in the net group on a 386
assembler version initially targeted to be a LAN-
MAN file server product. Last October, the per
formance of Pinball was compared to that of an
IBM file system implementation leading to the
decision that Pinball would be the installable file
system shipped with OS/2 1.2.

Pinball-In-C started back in June of '88 as a
translation of the ASM code that existed at that Additionally, we have some favorable results from
time. Because it is our primary goal, we have a test which performs random I/O in a 3 megabyte
carefully monitored performance on a regular basis, file. For random writes using the 12.71 build,
After intensive performance tuning just before we PIC's average time for Dos Write of 256 bytes
entered public build in November, we were only 2 compared to FAT looks favorable: 34 ms for PIC
to 16 percent slower than the ASM version's vs. 61 ms for FAT.
elapsed times on a suite of six scenarios—the very
same "fly-off tests used earlier. The performance In the course of the next few weeks Russ Blake's
hit was probably due to an overhead of writing in group will be collecting more data on PIC's per-
C (but the compiler is pretty good), and the fact that formance in a variety of tests.

DosGetNews Page 3

Editor (file copy, delete, rename) 77%
Attrib (FindFirst/Next, get attribs) 63%
Xcopy (directory tree copy) 47%
Rbase (random read/write) 45%
Lanmc 55%
MakeC (C compiler/make) 86%

pcjs.org



Features RootFNODE

Besides performance, extended attribute support
and long names are important aspects of Pinball.
Pinball allows a file name to be up to 254 bytes
long and supports the same set of allowed charac
ters in file names as FAT. However, the'.' charac
ter has no special meaning in Pinball. For example,
"MY^PERSONAL_FINANCES.l-l-89.XLS" and
"CRACK_PATH_NAME.C.DIFF" are perfectly
valid file names.

A file's extended attributes are a second data
stream that is stored logically as name, value pairs.
The total length of all extended attributes for a file
can be up to 2 GBytes. APIs exist that allow a
program to set or retrieve an extended attribute by
name. Uses for EAs are up to the application but
typically might be to store information that de
scribes the file (such as an icon, or a description of
the contents of the file or author); the name of a
program (or the program itself) that allows the file
to be viewed; or possibly even digitized voice that
corresponds to certain sections of a document used
in a voice-annotated-text application.

Internals Overview

In Pinball, every file and directory (including the
root) has a disk data structure, known as an FNODE,
that contains information such as extended attrib
utes, and a pointer to either the file allocation or the
B-tree holding the directory entries. The layout is
shown below.

DirBtreez
Dir Btree Dir Btree

Dir FNODEI
X

File FNODE

. DirBtree allocation
I i

i
DirBtree DirBtree 1

Logically, a B-tree node looks like this:

directory
entry

directory
entry

T T v

Each down pointer points to another B-tree node.
Directory entries are ordered such that entries in
the node pointed to by the left down pointer are
lexically less, and entries in the node pointed to by
the right down pointer are lexically greater than the
entry itself. This results in an ordered set of records
returned from FindFirst/Next calls. For file names
of length 13, over 175,000 files would have to be
created in the same directory before the B-tree
would grow beyond 3 levels! Directory entries not
only contain the name of the file or subdirectory,
but hold the attributes, modification and access
times, and extended attribute size as well.

Much of the performance in Pinball is achieved
through its caching. There are, in fact, three levels
of caching. At the lowest level, of course, is the
disk-block cache consisting of a collection of 2KByte
buffers.

DosGetNews Page 4

pcjs.org



When cache buffers are written, they are marked
dirty—an indication to the lazy writer that they
should be written to disk in the near future. The
lazy writer periodically wakes up and traverses the
chain of dirty buffers looking for buffers to write.
It wakes up when either the disk is idle for a
specified length of time, the data in a cache block
is older than a certain time, or the number of dirty
buffers exceeds some high water mark.

The next level of caching involves maintaining in-
RAM data structures linked together so that it
mirrors the heirarchical nature of the file system.
The first time a directory is touched, a new direc
tory data structure is linked in. Each of these data
structures contains the logical sector number (LSN)
of the FNODE and a hint on the location of the
topmost B-tree node. The hint may provide a low
cost short cut to get to the directory—it contains
the LSN of the topmost directory B-tree node and
a pointer to a cache block that recently contained
this disk data structure. If we're lucky, the buffer
was not reused and still contains the B-tree node, so
we save ourselves a potential disk hit. If not, then
we must look in the hash chain to see if the desired
sector exists elsewhere in the cache or, in the worst
case, we must read the disk. At least we didn't have
to traverse the entire directory structure where
each directory is a B-tree in itself to find our target
directory. Thus, in the typical case for a filesystem
request, we'll use this directory "cache" to get to
the topmost B-tree node for the target directory—
and hopefully we get this B-tree node out of the
cache. These directory structures also contain a
semaphore providing a convenient way to serialize
access to the directory when splitting, creating and
deleting entries.

The highest level of caching involves maintaining
a short list of complete path names, the name

checksum and the pointer to the corresponding
directory cache structure. If we match on the path
name, then we have a pointer to the in-RAM
directory structure without having to traverse the
complete tree. The name compare is fast since we
first do a numerical comparison of the checksums.

Build Environment

We did something different in organizing our
source code. The project is divided up into mod
ules and a directory in the source tree exists for
each of these modules. Within each directory, we
have a convention of one function per file with the
file name being the same as the function name.
Each directory's makefile will build a library and
the makefile for PIC's "root" will link PIC's entry
point functions with the list of libraries created for
each directory.

This has provided a good way to manage the code
in an environment where summer students have
had to come on board quickly, and prevents most
situations where two people have to change the
same file concurrently. Also, making a small change
in one function will not cause the entire module to
be recompiled.

Status

During the first week of February, PIC entered
system test—whew! There's a minimal amount of
new functionality that is currently under develop
ment and a lot of debugging work ahead of us. We
also anticipate making some performance related
improvements as we learn results of benchmarks
and identify "hot-spots" in the code. Although we
have a lot of work left, we are planning on meeting
our June milestone for completing Pinball-In-C
for 1.2.

DosGetNews Page 5

pcjs.org



Development Documentation
by Janine Harris

Quite a lot has been happening with documenta
tion lately. For 1.3/2.0 there will not be a spec as
we've had for 1.1 and 1.2. Instead we are going to
use the Design Workbook (DWB) and generate a
spec/technical reference from it. To facilitate this,
a disk has been established on the PCV machine in
Boca which contains all of the DWB files. Micro
soft, Boca and Hursley share access to it

The goals in establishing this disk are to provide
ready access to the files, help to ensure more up-to-
date documentation, and provide greater commu
nication between the development sites. It should
also solve the problem we have had with not being
able to obtain documentation on Presentation
Manager (PM). With Hursley an active partner in
the DWB, we now have ready access to their
information.

to the "Inform" status, any time the file is updated,
a message is sent telling you the file has changed.
"Subscribe" works in a similar fashion. It will tell
you of a change and send a copy of the updated file
to you.

Madeline Weise has had the job of building the
workbooks and sending all of our DWB files to
Boca once a week. Boca would send her back all
of their files and she would rebuild the workbooks.
With the advent of the TOOLS disk, Madeline is
"informed " of any changes made by Boca or
Hursley and no longer has to receive and then
download all of their files. The process now is to
get any IBM files from the TOOLS disk which
have changed and then, together with the latest doc
files from the Oatbran source tree, build the work
books.

The system used to store the files on PCV, called
"TOOLS" has several nice features. The major
ones are "Inform" and "Subscribe". If you set a file

To view any of these documents on-line, look in
the directories in\\OS2DOOD\os2.3\workbook.

Directory File Volume

32API apicomp.ppr 32API/DosCalls
CRUISER cruiser.ppr Kernel
VDM mvdm.ppr MVDM
SECURITY secur.ppr Security
PM pmdoc.ppr Presentation Mgr

DosGetNews Page 6

pcjs.org


